Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/75022
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorShichkin, A. V.en
dc.contributor.authorBuevich, A. G.en
dc.contributor.authorSergeev, A. P.en
dc.date.accessioned2019-07-22T06:43:39Z-
dc.date.available2019-07-22T06:43:39Z-
dc.date.issued2018-
dc.identifier.citationShichkin A. V. Comparison of artificial neural network, random forest and random perceptron forest for forecasting the spatial impurity distribution / A. V. Shichkin, A. G. Buevich, A. P. Sergeev // AIP Conference Proceedings. — 2018. — Vol. 1982. — 20005.en
dc.identifier.issn0094-243X-
dc.identifier.otherhttps://aip.scitation.org/doi/pdf/10.1063/1.5045411pdf
dc.identifier.other1good_DOI
dc.identifier.other1e1a8219-7fce-4858-867d-e00297a9b8f8pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85051121152m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/75022-
dc.description.abstractThe paper is present a comparison of modern approaches for predicting the spatial distribution in the upper soil layer of a chemical element chromium (Cr), which had spots of anomalously high concentration in the investigated region. The distribution of a normally distributed element copper (Cu) was also predicted. The data were obtained as a result of soil screening in the city of Tarko-Sale, Russia. Models based on artificial neural networks (multilayer perceptron MLP), random forests (RF), and also a model based on a random forest in which MLP used as a tree - a random perceptron forest (RMLPF) - were considered. The models were implemented in MATLAB. Approaches using artificial neural networks (MLP and RMLPF) were significantly more accurate for anomalously distributed Cr. Models based on RF algorithms proved to be more accurate for normally distributed copper. In general, the proposed model RMLPF was the most universal and accurate. © 2018 Author(s).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conference Proceedingsen
dc.titleComparison of artificial neural network, random forest and random perceptron forest for forecasting the spatial impurity distributionen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.conference.name2nd International Conference on Mathematical Methods and Computational Techniques in Science and Engineeringen
dc.conference.date16 February 2018 through 18 February 2018-
dc.identifier.rsi35712930-
dc.identifier.doi10.1063/1.5045411-
dc.identifier.scopus85051121152-
local.affiliationUral Federal University, Mira str., 19, Ekaterinburg, 620002, Russian Federationen
local.affiliationInstitute of Industrial Ecology UB RAS, S. Kovalevskoy str., 20, Ekaterinburg, 620990, Russian Federationen
local.contributor.employeeШичкин Андрей Васильевичru
local.contributor.employeeБуевич Александр Геннадьевичru
local.contributor.employeeСергеев Александр Петровичru
local.volume1982-
dc.identifier.wos000447848800005-
local.identifier.pure7763378-
local.description.order20005-
local.identifier.eid2-s2.0-85051121152-
local.identifier.wosWOS:000447848800005-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1063-1.5045411.pdf1,13 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.