Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/73987
Title: Optimization of the photon path length probability density function-simultaneous (PPDF-S) method and evaluation of CO 2 retrieval performance under dense aerosol conditions
Authors: Iwasaki, C.
Imasu, R.
Bril, A.
Oshchepkov, S.
Yoshida, Y.
Yokota, T.
Zakharov, V.
Gribanov, K.
Rokotyan, N.
Issue Date: 2019
Publisher: MDPI AG
Citation: Optimization of the photon path length probability density function-simultaneous (PPDF-S) method and evaluation of CO 2 retrieval performance under dense aerosol conditions / C. Iwasaki, R. Imasu, A. Bril, et al. // Sensors (Switzerland). — 2019. — Vol. 19. — Iss. 5. — 1262. — DOI: 10.3390/s19051262.
Abstract: The photon path length probability density function-simultaneous (PPDF-S) algorithm is effective for retrieving column-averaged concentrations of carbon dioxide (XCO 2 ) and methane (XCH 4 ) from Greenhouse gases Observing Satellite (GOSAT) spectra in Short Wavelength InfraRed (SWIR). Using this method, light-path modification attributable to light reflection/scattering by atmospheric clouds/aerosols is represented by the modification of atmospheric transmittance according to PPDF parameters. We optimized PPDF parameters for a more accurate XCO 2 retrieval under aerosol dense conditions based on simulation studies for various aerosol types and surface albedos. We found a more appropriate value of PPDF parameters referring to the vertical profile of CO 2 concentration as a measure of a stable solution. The results show that the constraint condition of a PPDF parameter that represents the light reflectance effect by aerosols is sufficiently weak to affect XCO 2 adversely. By optimizing the constraint, it was possible to obtain a stable solution of XCO 2 . The new optimization was applied to retrieval analysis of the GOSAT data measured in Western Siberia. First, we assumed clear sky conditions and retrieved XCO 2 from GOSAT data obtained near Yekaterinburg in the target area. The retrieved XCO 2 was validated through a comparison with ground-based Fourier Transform Spectrometer (FTS) measurements made at the Yekaterinburg observation site. The validation results showed that the retrieval accuracy was reasonable. Next, we applied the optimized method to dense aerosol conditions when biomass burning was active. The results demonstrated that optimization enabled retrieval, even under smoky conditions, and that the total number of retrieved data increased by about 70%. Furthermore, the results of the simulation studies and the GOSAT data analysis suggest that atmospheric aerosol types that affected CO 2 analysis are identifiable by the PPDF parameter value. We expect that we will be able to suggest a further improved algorithm after the atmospheric aerosol types are identified. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords: AEROSOLS
CARBON DIOXIDE (CO 2 )
GREENHOUSE GASES OBSERVING SATELLITE (GOSAT)
PHOTON PATH LENGTH PROBABILITY DENSITY FUNCTION (PPDF)
RETRIEVAL
SHORT WAVELENGTH INFRARED (SWIR)
AEROSOLS
ATMOSPHERIC AEROSOLS
ATMOSPHERIC THERMODYNAMICS
CARBON DIOXIDE
DENSITY OF GASES
FOURIER TRANSFORM INFRARED SPECTROSCOPY
GREENHOUSE GASES
INFRARED RADIATION
LIGHT REFLECTION
PHOTONS
PROBABILITY
SPACECRAFT INSTRUMENTS
ATMOSPHERIC TRANSMITTANCE
CONSTRAINT CONDITIONS
FOURIER TRANSFORM SPECTROMETERS
GREENHOUSE GASES OBSERVING SATELLITES
PHOTON PATH LENGTH
RETRIEVAL
RETRIEVAL PERFORMANCE
SHORT-WAVELENGTH INFRARED
PROBABILITY DENSITY FUNCTION
URI: http://elar.urfu.ru/handle/10995/73987
Access: cc-by
SCOPUS ID: 85062969574
WOS ID: 000462540400281
PURE ID: 9178157
ISSN: 1424-8220
DOI: 10.3390/s19051262
Sponsorship: Russian Science Foundation: 18-11-00024
Acknowledgments: The v3.0 ACOS/OCO-2 absorption coefficient (ABSCO) tables, used for the calculation of gas absorption coefficients, were provided by NASA and the ACOS/OCO-2 project. Vyacheslav Zakharov, Konstantin Gribanov, and Nikita Rokotyan thank the Russian Science Foundation for support of their research under the framework of grant 18-11-00024.
RSCF project card: 18-11-00024
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.3390-s19051262.pdf8,32 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.