Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/51521
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGlazyrin, N. Yu.en
dc.contributor.authorKlepinin, A. V.en
dc.date.accessioned2024-03-21T08:51:18Z-
dc.date.available2024-03-21T08:51:18Z-
dc.date.issued2012-
dc.identifier.isbn9783832531805-
dc.identifier.other43787id
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84905191613m
dc.identifier.other29c8930e-14f2-46e1-876a-e257e637d03dpure_uuid
dc.identifier.urihttp://elar.urfu.ru/handle/10995/51521-
dc.description.abstractIn this paper we propose a method of audio chord estimation. It does not rely on any machine learning technique, but shows good recognition quality compared to other known algorithms. We calculate a beat-synchronized spectrogram with high time and frequency resolution. It is then processed with an analogue of Prewitt filter used for edge detection in image processing to suppress nonharmonic spectral components. The sequence of chroma vectors obtained from spectrogram is smoothed using selfsimilarity matrix before the actual chord recognition. Chord templates used for recognition are binary-like, but have the tonic and the 5th note accented. The method is evaluated on the 13 Beatles albums. © 2012 Nikolay Glazyrin et al.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherPleiades Publishing Ltden
dc.sourceProceedings of the 9th Sound and Music Computing Conference, SMC 2012en
dc.subjectARTIFICIAL INTELLIGENCEen
dc.subjectEDGE DETECTIONen
dc.subjectIMAGE PROCESSINGen
dc.subjectSPECTROGRAPHSen
dc.subjectAUDIO CHORD ESTIMATIONSen
dc.subjectCHORD RECOGNITIONen
dc.subjectMACHINE LEARNING TECHNIQUESen
dc.subjectSELF-SIMILARITIESen
dc.subjectSELF-SIMILARITY MATRIXen
dc.subjectSPECTRAL COMPONENTSen
dc.subjectSPECTROGRAMSen
dc.subjectTIME AND FREQUENCIESen
dc.subjectLEARNING SYSTEMSen
dc.titleChord recognition using Prewitt filter and self-similarityen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.conference.name9th Sound and Music Computing Conference, SMC 2012en
dc.conference.date11.07.2012-14.07.2012-
dc.identifier.scopus84905191613-
local.affiliationUral Federal University, Russian Federationen
local.contributor.employeeГлазырин Николай Юрьевичru
local.contributor.employeeКлепинин Александр Владимировичru
local.issue9-
local.contributor.departmentИнститут естественных наук и математикиru
local.identifier.pure1098418-
local.identifier.eid2-s2.0-84905191613-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-84905191613.pdf258,15 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.