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ABSTRACT

In this paper we propose a method of audio chord esti-
mation. It does not rely on any machine learning tech-
nique, but shows good recognition quality compared to
other known algorithms. We calculate a beat-synchronized
spectrogram with high time and frequency resolution. It
is then processed with an analogue of Prewitt filter used
for edge detection in image processing to suppress non-
harmonic spectral components. The sequence of chroma
vectors obtained from spectrogram is smoothed using self-
similarity matrix before the actual chord recognition. Chord
templates used for recognition are binary-like, but have the
tonic and the 5th note accented. The method is evaluated
on the 13 Beatles albums.

1. INTRODUCTION

Audio chord estimation is one of the most interesting tasks
in music information retrieval. Representation of audio
as a sequence of chords can be helpful for many other
tasks, and itself can provide valuable information to the
user. Chord recognition algorithms have been showing
great progress during last years. 12 out of 18 algorithms
that have participated the MIREX 2011 Audio Chord De-
scription task have achieved chord weighted average over-
lap ratio greater than 0.70. All of them use machine learn-
ing algorithms to some extent, except one of the variants
of the method by T. Cho and J. P. Bello [1] and the method
proposed by T. Rocher et al. [2]. But the usage of machine
learning makes the algorithm dependent on training data.
Until recently the only data set available to researchers was
composed of 12 albums of The Beatles, one 2-CD album
of Queen and one album of Zweieck. Not a long time ago
the Music Audio and Research Lab in New York Univer-
sity started to annotate the songs from RWC collection of
popular music. Still, the available data cover only a small
subset of world music. Therefore, we believe that the de-
velopment of an algorithm that could provide good quality
of chord recognition without any training makes sense.
The transition from low-level sound information recorded
in the wave file to high-level information about the se-
quence of chords is usually done in several steps. At first
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the spectrogram of sound file is calculated. The Short-
Time Fourier Transform and the constant-() transform [3]
are commonly used at this step. Then the spectrogram is
transformed into a sequence of chroma vectors. Pitch Class
Profile vectors, introduced by T. Fujishima [4], are often
used here. Some modifications were proposed later, such
as Enhanced Pitch Class Profile [5] and Harmonic Pitch
Class Profile [6]. Chroma DCT-Reduced log Pitch (CRP)
features introduced by M. Miiller [7] also became popular
recently.

The sequence of chroma vectors is then used to obtain the
resulting sequence of chords. Two common methods used
at this step are chord templates and probabilistic chord
models [8]. The latter is more popular, but it usually re-
quires a learning stage. The former requires no training
and corresponding systems usually run faster than the sys-
tems based on probabilistic chord models. The system by
L. Oudre et al. [9] uses 24 binary templates for major and
minor chords and has low computational time. The system
by T. Cho and J. P. Bello [1] also uses 24 chord templates
in one of its variants. They employ the Viterbi algorithm
to determine the most probable sequence of chords. The
pseudo-probabilities for this algorithm variant are calcu-
lated by taking the reciprocal of the Euclidean distances.
The quality of chord recognition shown by this method
does not differ much from the quality of other participating
algorithms (the variants of the same algorithm using gaus-
sian mixture models; systems based on hidden Markov
models). The system by T. Rocher et al. [2] tries to in-
corporate the musical theory into the process of chord se-
quence recognition. They estimate both chord and local
key on each frame and then look for the best path through
chord-key pairs.

The suggested method is a combination of well-known
techniques and the new ideas. It differs from the methods
listed above in the following aspects. We propose the new
method of preliminary filtering of the spectrogram based
on the analogue of Prewitt filter. The templates used for
major and minor chord are not really binary. The tem-
plates for augmented and diminished chords are introduced
as well, so the total number of templates used is 48. The se-
quence of chroma vector is smoothed using the self-similarity
matrix.

This paper is organized as follows. Section 2 gives the
description of suggested method. In section 3 the evalua-
tion methodology is described. In section 4 the description
of the results obtained by applying the method to the test
corpus is given. We also analyze the influence of each step
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Figure 1. Block diagram of the proposed method.

on the results and typical errors of the proposed method.
Section 5 summarizes the results and provides the plans
for future work.

2. DESCRIPTION OF THE SYSTEM

The block diagram of the proposed method is shown at the
figure 1.

2.1 Tuning

We used 16-bit 44100 Hz PCM wave files for the analysis.
Stereo files were preliminary converted to mono. Before
calculating the spectrum of the given audio recording the
following steps have been performed.

2.1.1 Tuning frequency estimation

This step is important for recordings which were origi-
nally analogue. They may have variations or deviations in
tempo, and the orchestra may be tuned to a frequency dif-
ferent from standard 440 Hz. For the majority of contem-
porary music this step is less important, because nowadays
the music is often synthesized with the help of computers.

A very simple algorithm is used to estimate tuning fre-
quency of an audio record. It is similar to the one that was
described by Y. Zhu et. al. in [10]. This algorithm is by no
means the best one, but it has been chosen for the ease of
implementation.

The whole record is split into 7" sequential fragments.
Then the constant-() transform is applied on each frag-
ment ¢;,¢ = 1,2, ..., T with the following parameters: 120
frequency components per octave (or 10 components per
note), minimal component frequency equal to 440 Hz, span
of 4 octaves. Due to chosen (rather big) minimal frequency
this procedure is very fast for the whole file. On each frag-
ment ¢; we determine the position of maximal spectrum
value g(¢;). Then a histogram of values of this function

is constructed. It has 480 bins. The histogram is then
folded to 10 bins: j-th bin of the original histogram con-
tributes to (j mod 10)-th bin of the collapsed histogram
for j = 0,1,...,479. Then the position of maximal value
in the resulting histogram shows the deviation of the tuning
frequency from the base 440 Hz frequency in range from
-1/2 to +1/2 semitone (427.5 Hz to 452.9 Hz) with step of
1/10 semitone (maximum at Oth position corresponds to no
deviation). Calculated deviation is used further to specify
the tuning frequency for main constant-() transform.

2.1.2 Beat positions estimation

Musical events are often aligned according to musical me-
ter. Therefore it makes sense to choose the fragments of
sound file for further analysis aligned with musical beats.
To estimate the position of each beat in the sound file, the
BeatRoot library [11] was used.

The sequence of beat positions is then made 7" times more
frequent by inserting 7' — 1 intermediate elements evenly
between each pair of successive beat positions. Therefore,
if the source sequence has n elements, then the resulting
sequence will have 7' - (n — 1) 4 1 elements.

2.2 Calculation of the spectrogram

For each time position from this sequence the constant-()
transform on the fragment that is centered at this position
is performed. The transform has the following parameters:
60 frequency components per octave, 4 octaves span, min-
imal component frequency is 33 semitones below tuning
frequency. In case of standard tuning frequency 440 Hz the
minimal component has frequency 65.41 Hz (corresponds
to C2). The whole frequency range in this case spans from
65.41 Hz to 987.77 Hz.

The increase of the number of time positions is motivated
by the fact that for high frequencies a very short fragment
of the file is analyzed during the calculation of correspond-
ing constant-@) transform components. Given the men-
tioned transform parameters and the sampling frequency of
44.1 kHz, the fragment of length 1.32 s is required to calcu-
late the first transform component, and the length of 0.09 s
is enough to calculate the last transform component. If a
record has 120 beats per minute, a fragment between two
successive beats will have length of 0.5 s. Thus it seems
reasonable to perform more than one constant-() transform
per beat and later take the average of resulting spectra. This
makes the method more robust. We have tried T' = 2, 4 and
8. Greater values cause too large overlap between succes-
sive transforms.

Then we perform some transformations of the resulting
spectrogram to reduce the noise and capture the areas that
reflect the sound of melodic musical instruments.

First transformation is to apply the median filter with win-
dow size wy to each row of the spectrogram (each row cor-
responds to a component frequency of constant-() trans-
form). We also tried the moving average filter, but its usage
led to worse result. Median filter reduces the noise without
smoothing the spectrogram too much, as moving average
filter does.



The objective of the second transformation is to suppress
non-harmonic spectral components. Many systems em-
ploy preprocessing of this kind to clean the spectrogram,
we only mention some of them. M. Mauch and S. Dixon
in [12] subtract a so-called background spectrum from the
spectrogram and discard negative values. D. FitzGerald
in [13] uses median filter to separate a spectrogram into a
harmonic part and a percussive part. N. Ono et. al. in [14]
use maximum a posteriori estimation for this separation.

We propose the method of non-harmonic spectral compo-
nents suppression based on the analogue of Prewitt opera-
tor usually used in image recognition algorithms to detect
edges. We need to detect the horizontal lines on the spec-
trogram and zero all the other spectral components. Hori-
zontal lines usually correspond to melodic sounds of mu-
sical instruments that last for some time and form chords.
The operator that was used has the following matrix:

-1 -1 -1
-1 -1 -1
-1 -1 -1

== -0 OO
R =, OO0
== =O OO

The dimensionality has been chosen to better match the
horizontal lines given constant-() transform frequency res-
olution of 5 components per note. For each point of the
spectrogram the convolution of spectrogram area centered
at this point and operator matrix is calculated. If the result
is less than 0, corresponding spectrogram value is set to 0,
and is preserved otherwise.

On the first picture at the figure 2 the spectrum of the
first 20 seconds of “Yellow submarine” is shown. The first
picture is obtained after the application of the 1st median
filter. The second picture shows the spectrogram after the
application of Prewitt filter.

Next, we compensate the initial increase of the number
of time positions by shrinking the spectrogram in 7" times
along the time axis. It is split into sequence of time frag-
ments each consisting of 7' columns. For each fragment
we calculate the arithmetical mean of its columns and re-
place the whole fragment with this new column. Therefore
the spectrogram becomes beat aligned: each column cor-
responds to a beat position in the original file.

Finally, we apply one more median filter with window
size ws to smooth the noise that could be added by this
shrinking.

2.3 Calculation of chroma vectors

The resulting spectrogram is of size 240 x n. To obtain
the sequence of 12-dimensional chroma vectors, we firstly
fold the spectrogram from 4 octaves to 1 octave. It is done
by summing the rows with indexes j, 7 + 60, 7 + 120, j +
180 for each 5 = 0, ..., 59 into one row. This results in a
matrix of size 60 x n consisting of 60-dimensional pitch

Figure 2. Spectrum before and after Prewitt filtering.

class profile column vectors. Then for each column vector
c; we calculate the 12-dimensional chroma vector p;:

2

pilil= Y alpj-hl-d", i=0,.,n, j=0,.,11
h=-2

The parameter d adjusts the contribution of spectral com-
ponents that do not correspond to real notes. We choose
d = 0.6. For the computation of p;[0] the components
¢;[58] and ¢;[59] are used.

2.4 Chroma vector sequence smoothing

The idea behind this process is that usually the same se-
quence of chords is repeated several times during one song.
For example, this can be the same melody that sounds in 2
different verses or refrains. Suggested smoothing process
is similar to the technique of recurrence plots used by T.
Cho and J. P. Bello in [1]. But we do not group the chroma
vectors into n-grams here.

We compute the self-similarity matrix S = {s;;} for the
sequence of chroma vectors using Euclidean distance. This
matrix has zeroes on the main diagonal. We normalize it
so that 0 < s;; < 1 for any ¢,j. Then for each row we
preserve only M - n minimal values and set all the oth-
ersto 1 (here 0 < M < 1). After that we only preserve
those diagonal segments of that matrix which are parallel
to main diagonal and have length greater than or equal to k:
{Sit1,j+1 < 1|0 <1 < ky,k; > k}. The resulting matrix
is “sparse” in the sense that it has few elements different
from 1.

Then we recalculate the sequence of chroma vectors:

n

> (1—s45)pj
> (1= sij)

<.
Il
—



The resulting sequence {p;}?_; is then used for chord es-
timation.

2.5 Chord estimation

We use chord templates to determine the corresponding
chord for each chroma vector. We tried two well known
metrics here: Euclidean distance and Kullback-Leibler di-
vergence. The latter is not symmetric and can be calculated
in 2 ways, both of them were tried. The chord correspond-
ing to the template which is the nearest to current chroma
vector is returned as a result.

The templates for major, minor, augmented, and dimin-
ished chords are used in the proposed method. A template
is a 12-dimensional vector. For augmented and diminished
chords this vector is binary. It has 1 on the positions corre-
sponding to notes which compose the chord and 0 on other
positions. But the templates for major and minor chords
are not really binary. Template components that corre-
spond to tonic and 5th note were additionally emphasized,
so that the template for C:maj looks like (1.3, 0, 0, O, 1,
0,0,1.3,0,0, 0, 0). Before distance calculation both tem-
plate vector and chroma vector are normalized to have unit
length in Euclidean space. We only mark as “no chord” the
fragment that goes before the 1st beat detected by Beatroot
in each audio record.

3. EVALUATION

The algorithm was evaluated on a collection of 13 Beat-
les albums annotated by C. Harte [15]. 4 songs have been
excluded from the collection because of Beatroot beat de-
tection errors on them: “A Day in the Life”, “Strawberry
Fields Forever”, “Helter Skelter”, “Revolution 9.

For each track the frame-based recall has been calculated
(as it is defined in MIREX 2011 Audio Chord Estimation
task) with the evaluations on the triad level. This means
that only the chords from this list have been checked: N,
X:maj, X:min, X:aug, X:dim, X:sus2, X:sus4. All the
other chords (including all 7th chords) have been excluded
from recall calculation. For those tracks that contain other
chords the effective length (that was used for recall calcu-
lation) is therefore less than the whole track length. The
details of the procedure can be found in [16]. Then the
chord average overlap ratio (AOR) and chord weighted av-
erage overlap ratio (WAOR) were calculated for the whole
collection using following formulae:

C
1 C Z lm, Tm
m=1
AOR = §_ Fm, WAOR="L
m=1 Z lm
m=1

Here C' is the number of tracks in the collection, 7, and
I, are the frame-based recall and effective length for track
m correspondingly. We employ these 2 overlap ratios as
the measures of chord recognition quality.

AOR WAOR
Our method 0.7046 | 0.7125
Rocher et al. (RHRC1) | 0.7289 | 0.7151
Cho and Bello (CB1) 0.7955 | 0.7786

Table 1. Average overlap scores

T | AOR WAOR | Time

2 | 0.5525 | 0.5614 | 3285 s
4 | 0.6717 | 0.6813 | 5083 s
8 | 0.7046 | 0.7125 | 8675 s

Table 2. Impact of time positions increase factor T’

4. RESULTS

The results of our method compared to the results of 2 sys-
tems participated in MIREX 2011 Audio Chord Estima-
tion task are shown in table 1. These systems do not em-
ploy any machine learning algorithms and their recognition
quality was evaluated using the same metrics. Therefore
they are good candidates for comparison. The values were
taken from MIREX 2011: Audio Chord Description result
page [17].

We can see that the results of our method and system by
Rocher et al. [2] are quite similar. But the system proposed
by Cho and Bello [1] due to the usage of Viterbi decoder
outperforms our method.

4.1 The impact of algorithm parameters

The proposed method depends on a number of parameters.
The process of finding their best values may be considered
as a “learning” or adaptation of the method to the collec-
tion of The Beatles songs. But we would rather investigate
the influence of different parameters on a chord recogni-
tion quality. The parameter space is multidimensional, so
we only investigate the impact of each parameter near the
optimal point by fixing all parameters except analyzed one.

Here we provide their optimal values found during eval-
uation on the collection:

e Time positions increase factor 7' = 8. Table 2 sum-
marizes the values of overlap scores and the process-
ing times for different values of 7. Bigger values
lead to better result, but the processing time for the
whole collection increases accordingly.

e First median filter window size w; = 17. It corre-
sponds to 2 beats. Table 3 summarizes the impact of
this parameter on the recognition quality.

e Second median filter window size wo = 3. It corre-
sponds to 3 beats. The value of wy = 5 leads to both
overlap ratios less than 0.7.

e The number of preserved elements in each row of
self-similarity matrix M = 0.15. Table 4 summa-
rizes the impact of this parameter on the recognition
quality.



wi | AOR WAOR
9 0.7013 | 0.7091
13 | 0.7038 | 0.7113
17 | 0.7046 | 0.7125
21 | 0.7017 | 0.7107

Table 3. Impact of the first median filter size

M AOR WAOR
0.05 | 0.6941 | 0.6996
0.10 | 0.7042 | 0.7095
0.15 | 0.7046 | 0.7125
0.20 | 0.7013 | 0.7088
0.25 | 0.6952 | 0.7033

Table 4. Impact of the part of preserved elements of self-
similarity matrix

e The minimal length of diagonal segment on self-
similarity matrix £k = 3. Table 5 summarizes the
impact of this parameter on the recognition quality.
The optimal values are different for 2 overlap ratios,
so we choose that one that minimizes weighted av-
erage overlap ratio.

The total processing time of the whole collection depends
mostly on the value of 7. For 7' = 8 the average time of
processing of one file is about 50 seconds on a test PC (In-
tel Core i3-2100 @3.10 GHz). The participants of MIREX
2008 Audio Chord Detection task had shown run time from
827 to 7411 seconds on the same dataset. In 2009 L. Oudre
et al. [9] reported the whole collection processing time of
their method of less than 800 seconds. So our straight-
forward implementation of spectrogram calculation really
needs to be optimized for better performance.

4.2 The impact of different processing steps

Table 6 summarizes the impact of different processing steps
of our method on the results. Our method without any ad-
ditional processing was chosen as a baseline. Out of 2
variants of Kullback-Leibler divergence the best one was
chosen — the distance from template to calculated chroma
vector. But its advantage over the Euclidean distance is un-
noticeable. The most-effective steps (except median filter-
ing steps that reduce the noise considerably) are the appli-
cation of Prewitt operator to the spectrogram and smooth-
ing using self-similarity matrix.

The two most common types of errors of the proposed
method are:

1. confusions between chords where root note of one
chord is the 5th note for another chord (e.g. A:maj
vs. D:maj);

2. recognition of a chord where no chord is playing;

3. confusions between major and minor chords with
same root (e.g. E:maj vs. E:min).

k | AOR WAOR
2 | 0.7001 | 0.7078
3 | 0.7046 | 0.7125
4 |0.7053 | 0.7122
5 | 0.7056 | 0.7121
6 | 0.7056 | 0.7118
7 | 0.7026 | 0.7081

Table 5. Impact of the minimal length of diagonal segment
of self-similarity matrix

Step AOR WAOR
Baseline 0.5445 | 0.5439
With tuning frequency estimation | 0.5722 | 0.5725
With 1st median filter 0.6494 | 0.6509
With Prewitt operator 0.6604 | 0.6626
With 2nd median filter 0.6741 | 0.6779
Kullback-Leibler divergence 0.6751 | 0.6795
Non-binary major/minor templates | 0.6801 | 0.6844
With self-similarity smoothing 0.7046 | 0.7125

Table 6. Impact of different steps

The errors of the first type may have been caused by the
usage of templates with emphasized root and 5th notes. We
have also tried non-emphasized, really binary templates
with 1 to 6 additional harmonics, as in [9], but the recog-
nition quality was not improved.

The errors of the second type are generally caused by the
fact that we do not detect chord absence anywhere except
the very beginning of the audio record. The regions of
silence or where only percussive instruments are playing
should be also detected.

The errors of the third type are very common for chord
recognition systems. Our chord templates also do not assist
in resolving this issue. We expect that proper local key
estimation and the theory of harmony can be helpful here.

Another important problem is the blurring of borders be-
tween chords due to 2 steps of median filtering. To over-
come this the additional segmentation step can be intro-
duced. At that step we can locate exact borders between
chords, and then retry the recognition considering those
borders. Also this whole procedure can be made iterative.

S. CONCLUSION

The chord recognition method we presented shows good
recognition quality compared to other known methods that
do not utilize machine learning algorithms. The usage of
Prewitt-like operator for horizontal lines separation on the
spectrogram has positive effect on the recognition quality.
The additional chroma vector sequence smoothing proce-
dure also improves the result. Unlike many other methods
we mark out the augmented and diminished chords. But
because of the large number of constant-() transforms the
performance of the proposed method is far from perfect. In
future we plan to optimize the algorithm to reduce the com-
putation time. Also we plan to check the behavior of our



method on a collection of popular music from RWC music
database. We consider applying more musical knowledge
to the process of chord extraction, especially the theory of
harmony.
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