Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/51359
Title: Chromatic uniqueness of elements of height ≤ 3 in lattices of complete multipartite graphs
Authors: Baranskii, V. A.
Sen'chonok, T. A.
Issue Date: 2012
Citation: Baranskii V. A. Chromatic uniqueness of elements of height ≤ 3 in lattices of complete multipartite graphs / V. A. Baranskii, T. A. Sen'chonok // Proceedings of the Steklov Institute of Mathematics. — 2012. — Vol. 279. — № 1. — P. 1-16.
Abstract: For integers n and t such that 0 <t <n and a nonnegative integer h ≤ 3, it is proved that any complete t-partite n-graph with nontrivial parts and height h in the lattice NPL(n, t) of partitions of the positive integer n into t additive terms is chromatically unique. © 2012 Pleiades Publishing, Ltd.
Keywords: CHROMATIC POLYNOMIAL
CHROMATIC UNIQUENESS
COMPLETE MULTIPARTITE GRAPH
GRAPH
INTEGER PARTITION
LATTICE
URI: http://elar.urfu.ru/handle/10995/51359
Access: info:eu-repo/semantics/restrictedAccess
RSCI ID: 24580439
SCOPUS ID: 84871348242
WOS ID: 000312634700001
PURE ID: 1067542
ISSN: 0081-5438
DOI: 10.1134/S0081543812090015
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1134S0081543812090015_2012.pdf476,62 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.