Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/51359
Title: | Chromatic uniqueness of elements of height ≤ 3 in lattices of complete multipartite graphs |
Authors: | Baranskii, V. A. Sen'chonok, T. A. |
Issue Date: | 2012 |
Citation: | Baranskii V. A. Chromatic uniqueness of elements of height ≤ 3 in lattices of complete multipartite graphs / V. A. Baranskii, T. A. Sen'chonok // Proceedings of the Steklov Institute of Mathematics. — 2012. — Vol. 279. — № 1. — P. 1-16. |
Abstract: | For integers n and t such that 0 <t <n and a nonnegative integer h ≤ 3, it is proved that any complete t-partite n-graph with nontrivial parts and height h in the lattice NPL(n, t) of partitions of the positive integer n into t additive terms is chromatically unique. © 2012 Pleiades Publishing, Ltd. |
Keywords: | CHROMATIC POLYNOMIAL CHROMATIC UNIQUENESS COMPLETE MULTIPARTITE GRAPH GRAPH INTEGER PARTITION LATTICE |
URI: | http://elar.urfu.ru/handle/10995/51359 |
Access: | info:eu-repo/semantics/restrictedAccess |
RSCI ID: | 24580439 |
SCOPUS ID: | 84871348242 |
WOS ID: | 000312634700001 |
PURE ID: | 1067542 |
ISSN: | 0081-5438 |
DOI: | 10.1134/S0081543812090015 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.1134S0081543812090015_2012.pdf | 476,62 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.