Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/51176
Title: Sharp integral inequalities for fractional derivatives of trigonometric polynomials
Authors: Arestov, Vitalii V.
Glazyrina, Polina Yu.
Issue Date: 2012
Citation: Arestov V. V. Sharp integral inequalities for fractional derivatives of trigonometric polynomials / Vitalii V. Arestov, Polina Yu. Glazyrina // Journal of Approximation Theory. — 2012. — Vol. 164. — № 11. — P. 1501-1512.
Abstract: We study sharp estimates of integral functionals for operators on the set T n of real trigonometric polynomials f n of degree n1 in terms of the uniform norm
f n
C 2π of the polynomials and similar questions for algebraic polynomials on the unit circle of the complex plane. P.Erdös, A.P.Calderon, G.Klein, L.V.Taikov, and others investigated such inequalities. In this paper, we, in particular, show that the sharp inequality
D αf n
q≤n α
cos t
q
f n
∞ holds on the set T n for the Weyl fractional derivatives Dα f n of order α 1 for 0 ≤ q < ∞. For q = ∞ (α1), this fact was proved by Lizorkin (1965) [12]. For 1 ≤ q < ∞ and positive integer α, the inequality was proved by Taikov (1965) [23]; however, in this case, the inequality follows from results of an earlier paper by Calderon and Klein (1951) [6]. © 2012 Elsevier Inc.
Keywords: ALGEBRAIC POLYNOMIAL
BERNSTEIN INEQUALITY
DERIVATIVE OF FRACTIONAL ORDER
SZEGÖ INEQUALITY
TRIGONOMETRIC POLYNOMIAL
URI: http://elar.urfu.ru/handle/10995/51176
Access: info:eu-repo/semantics/restrictedAccess
SCOPUS ID: 84866293490
WOS ID: 000309894900004
PURE ID: 1072762
ISSN: 0021-9045
DOI: 10.1016/j.jat.2012.08.004
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016j.jat.2012.08.004_2012.pdf218,85 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.