Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/51176
Title: | Sharp integral inequalities for fractional derivatives of trigonometric polynomials |
Authors: | Arestov, Vitalii V. Glazyrina, Polina Yu. |
Issue Date: | 2012 |
Citation: | Arestov V. V. Sharp integral inequalities for fractional derivatives of trigonometric polynomials / Vitalii V. Arestov, Polina Yu. Glazyrina // Journal of Approximation Theory. — 2012. — Vol. 164. — № 11. — P. 1501-1512. |
Abstract: | We study sharp estimates of integral functionals for operators on the set T n of real trigonometric polynomials f n of degree n1 in terms of the uniform norm f n C 2π of the polynomials and similar questions for algebraic polynomials on the unit circle of the complex plane. P.Erdös, A.P.Calderon, G.Klein, L.V.Taikov, and others investigated such inequalities. In this paper, we, in particular, show that the sharp inequality D αf n q≤n α cos t q f n ∞ holds on the set T n for the Weyl fractional derivatives Dα f n of order α 1 for 0 ≤ q < ∞. For q = ∞ (α1), this fact was proved by Lizorkin (1965) [12]. For 1 ≤ q < ∞ and positive integer α, the inequality was proved by Taikov (1965) [23]; however, in this case, the inequality follows from results of an earlier paper by Calderon and Klein (1951) [6]. © 2012 Elsevier Inc. |
Keywords: | ALGEBRAIC POLYNOMIAL BERNSTEIN INEQUALITY DERIVATIVE OF FRACTIONAL ORDER SZEGÖ INEQUALITY TRIGONOMETRIC POLYNOMIAL |
URI: | http://elar.urfu.ru/handle/10995/51176 |
Access: | info:eu-repo/semantics/restrictedAccess |
SCOPUS ID: | 84866293490 |
WOS ID: | 000309894900004 |
PURE ID: | 1072762 |
ISSN: | 0021-9045 |
DOI: | 10.1016/j.jat.2012.08.004 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.1016j.jat.2012.08.004_2012.pdf | 218,85 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.