Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/51159
Название: A SNPshot of PubMed to associate genetic variants with drugs, diseases, and adverse reactions
Авторы: Hakenberg, Jörg
Voronov, Dmitry
Nguyên, Võ Hà
Liang, Shanshan
Anwar, Saadat
Lumpkin, Barry
Leaman, Robert
Tari, Luis
Baral, Chitta
Дата публикации: 2012
Библиографическое описание: A SNPshot of PubMed to associate genetic variants with drugs, diseases, and adverse reactions / Jörg Hakenberg, Dmitry Voronov, Võ Hà Nguyên, Shanshan Liang, Saadat Anwar, Barry Lumpkin, Robert Leaman, Luis Tari, Chitta Baral // Journal of Biomedical Informatics. — 2012. — Vol. 45. — № 5. — P. 842-850.
Аннотация: Motivation: Genetic factors determine differences in pharmacokinetics, drug efficacy, and drug responses between individuals and sub-populations. Wrong dosages of drugs can lead to severe adverse drug reactions in individuals whose drug metabolism drastically differs from the " assumed average" Databases such as PharmGKB are excellent sources of pharmacogenetic information on enzymes, genetic variants, and drug response affected by changes in enzymatic activity. Here, we seek to aid researchers, database curators, and clinicians in their search for relevant information by automatically extracting these data from literature. Approach: We automatically populate a repository of information on genetic variants, relations to drugs, occurrence in sub-populations, and associations with disease. We mine textual data from PubMed abstracts to discover such genotype-phenotype associations, focusing on SNPs that can be associated with variations in drug response. The overall repository covers relations found between genes, variants, alleles, drugs, diseases, adverse drug reactions, populations, and allele frequencies. We cross-reference these data to EntrezGene, PharmGKB, PubChem, and others. Results: The performance regarding entity recognition and relation extraction yields a precision of 90-92% for the major entity types (gene, drug, disease), and 76-84% for relations involving these types. Comparison of our repository to PharmGKB reveals a coverage of 93% of gene-drug associations in PharmGKB and 97% of the gene-variant mappings based on 180,000 PubMed abstracts. Availability: http://bioai4core.fulton.asu.edu/snpshot. © 2012 Elsevier Inc..
Ключевые слова: DATABASES
INFORMATION EXTRACTION
PHARMACOGENOMICS
TEXT MINING
URI: http://elar.urfu.ru/handle/10995/51159
Условия доступа: info:eu-repo/semantics/restrictedAccess
Идентификатор SCOPUS: 84865981409
Идентификатор WOS: 000309146200004
Идентификатор PURE: 1131450
ISSN: 1532-0464
DOI: 10.1016/j.jbi.2012.04.006
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1016j.jbi.2012.04.006_2012.pdf654,68 kBAdobe PDFПросмотреть/Открыть    Request a copy


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.