Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/51153
Title: Lower bound for the Lebesgue function of an interpolation process with algebraic polynomials on equidistant nodes of a simplex
Authors: Baidakova, N. V.
Issue Date: 2012
Publisher: Mathematical Notes
Citation: Baidakova N. V. Lower bound for the Lebesgue function of an interpolation process with algebraic polynomials on equidistant nodes of a simplex / N. V. Baidakova // Mathematical Notes. — 2012. — Vol. 92. — № 1-2. — P. 16-22.
Abstract: For an interpolation process with algebraic polynomials of degree n on equidistant nodes of an m-simplex for m ≥ 2, we obtain a pointwise lower bound for the Lebesgue function similar to the well-known estimate for interpolation on a closed interval. © 2012 Pleiades Publishing, Ltd.
Keywords: ALGEBRAIC POLYNOMIAL
EQUIDISTANT NODES
INTERPOLATION PROCESS
LEBESGUE CONSTANT
LEBESGUE FUNCTION
M-SIMPLEX
URI: http://elar.urfu.ru/handle/10995/51153
RSCI ID: 20476630
SCOPUS ID: 84865765597
WOS ID: 000308042500002
PURE ID: 1080661
ISSN: 0001-4346
1573-8876
DOI: 10.1134/S0001434612070024
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.