Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/51153
Title: | Lower bound for the Lebesgue function of an interpolation process with algebraic polynomials on equidistant nodes of a simplex |
Authors: | Baidakova, N. V. |
Issue Date: | 2012 |
Publisher: | Mathematical Notes |
Citation: | Baidakova N. V. Lower bound for the Lebesgue function of an interpolation process with algebraic polynomials on equidistant nodes of a simplex / N. V. Baidakova // Mathematical Notes. — 2012. — Vol. 92. — № 1-2. — P. 16-22. |
Abstract: | For an interpolation process with algebraic polynomials of degree n on equidistant nodes of an m-simplex for m ≥ 2, we obtain a pointwise lower bound for the Lebesgue function similar to the well-known estimate for interpolation on a closed interval. © 2012 Pleiades Publishing, Ltd. |
Keywords: | ALGEBRAIC POLYNOMIAL EQUIDISTANT NODES INTERPOLATION PROCESS LEBESGUE CONSTANT LEBESGUE FUNCTION M-SIMPLEX |
URI: | http://elar.urfu.ru/handle/10995/51153 |
RSCI ID: | 20476630 |
SCOPUS ID: | 84865765597 |
WOS ID: | 000308042500002 |
PURE ID: | 1080661 |
ISSN: | 0001-4346 1573-8876 |
DOI: | 10.1134/S0001434612070024 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.