Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/51027
Title: Interpolation in a ball with a minimum value of the L p-Norm of the Laplace operator
Authors: Novikov, S. I.
Issue Date: 2012
Citation: Novikov S. I. Interpolation in a ball with a minimum value of the L p-Norm of the Laplace operator / S. I. Novikov // Proceedings of the Steklov Institute of Mathematics. — 2012. — Vol. 277. — № SUPPL. 1. — P. 152-160.
Abstract: We consider the problem of interpolation of finite sets of numerical data bounded in L p-norms (1 ≤ p < ∞) by smooth functions that are defined in an n-dimensional Euclidean ball of radius R and vanish on the boundary of the ball. Under some constraints on the location of interpolation nodes, we obtain two-sided estimates with a correct dependence on R for the L p-norms of the Laplace operators of the best interpolants. © 2012 Pleiades Publishing, Ltd.
Keywords: CUBIC B-SPLINES
INTERPOLATION
LAPLACE OPERATOR
URI: http://elar.urfu.ru/handle/10995/51027
Access: info:eu-repo/semantics/restrictedAccess
RSCI ID: 20475746
SCOPUS ID: 84863606079
WOS ID: 000305909000015
PURE ID: 1080782
ISSN: 0081-5438
DOI: 10.1134/S008154381205015X
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1134S008154381205015X_2012.pdf458,38 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.