Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/50938
Title: The best Lp approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables
Authors: Koshelev, A. A.
Issue Date: 2012
Citation: Koshelev A. A. The best Lp approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables / A. A. Koshelev // Proceedings of the Steklov Institute of Mathematics. — 2012. — Vol. 277. — № SUPPL. 1. — P. 136-144.
Abstract: Close two-sided estimates are obtained for the best approximation in the space L p(ℝ m), m = 2 and 3, 1 ≤ p ≤ ∞, of the Laplace operator by linear bounded operators in the class of functions for which the second power of the Laplace operator belongs to the space L p(ℝ m). We estimate the best constant in the corresponding Kolmogorov inequality and the error of the optimal recovery of values of the Laplace operator on functions from this class given with an error. We present an operator whose deviation from the Laplace operator is close to the best. © 2012 Pleiades Publishing, Ltd.
Keywords: APPROXIMATION OF UNBOUNDED OPERATORS BY BOUNDED OPERATORS
KOLMOGOROV INEQUALITY
LAPLACE OPERATOR
OPTIMAL RECOVERY
URI: http://elar.urfu.ru/handle/10995/50938
Access: info:eu-repo/semantics/restrictedAccess
RSCI ID: 20475538
SCOPUS ID: 84863566757
WOS ID: 000305909000013
PURE ID: 1079265
ISSN: 0081-5438
DOI: 10.1134/S0081543812050136
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1134S0081543812050136_2012.pdf470,02 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.