Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/36855
Title: A Large-Scale Community Questions Classification Accounting for Category Similarity: An Exploratory?
Authors: Lezina, G.
Braslavski, P.
Браславский, П. И.
Лезина, Г.
Issue Date: 2015
Publisher: Springer International Publishing
Citation: Lezina G. A Large-Scale Community Questions Classification Accounting for Category Similarity: An Exploratory? / G. Lezina, P. Braslavski // 8th Russian Summer School on Information Retrieval, RuSSIR 2014, Communications in Computer and Information Science. — Springer International Publishing, Switzerland, 2015. — Vol. 505. — P. 332-347.
Abstract: The paper reports on a large-scale topical categorization of questions from a Russian community question answering (CQA) service Otvety@Mail.Ru. We used a data set containing all the questions (more than 11 millions) asked by Otvety@Mail.Ru users in 2012. This is the first study on question categorization dealing with non-English data of this size. The study focuses on adjusting category structure in order to get more robust classification results. We investigate several approaches to measure similarity between categories: the share of identical questions, language models, and user activity. The results show that the proposed approach is promising.
Keywords: QUESTION TOPIC CATEGORIZATION
COMMUNITY QUESTION ANSWERING
QUESTION RETRIEVAL
LARGE-SCALE CLASSIFICATION
URI: http://elar.urfu.ru/handle/10995/36855
SCOPUS ID: 84951806953
WOS ID: 000369892500013
PURE ID: 569137
DOI: 10.1007/978-3-319-25485-2_13
metadata.dc.description.sponsorship: 14-07-00589; RFBR; Russian Foundation for Basic Research.
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
braslavski_russir2014.pdf356,05 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.