Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/27485
Title: The complete reducibility of some GF(2)A7-modules
Authors: Kondrat'ev, A. S.
Khramtsov, I. V.
Issue Date: 2013
Citation: Kondrat'ev A. S. The complete reducibility of some GF(2)A7-modules / A. S. Kondrat'ev, I. V. Khramtsov // Proceedings of the Steklov Institute of Mathematics. — 2013. — Vol. 283. — № 1. — P. 86-90.
Abstract: It is proved that, if G is a finite group with a nontrivial normal 2-subgroup Q such that G/Q ∼= A 7 and an element of order 5 from G acts freely on Q, then the extension G over Q is splittable, Q is an elementary abelian group, and Q is the direct product of minimal normal subgroups of G each of which is isomorphic, as a G/Q-module, to one of the two 4-dimensional irreducible GF(2)A7-modules that are conjugate with respect to an outer automorphism of the group A7. © 2013 Pleiades Publishing, Ltd.
Keywords: COMPLETELY REDUCIBLE REPRESENTATION
FINITE GROUP
GF(2)A7-MODULE
PRIME GRAPH
URI: http://elar.urfu.ru/handle/10995/27485
RSCI ID: 21889371
SCOPUS ID: 84887568583
WOS ID: 000327079000008
PURE ID: 838093
ISSN: 0081-5438
DOI: 10.1134/S0081543813090083
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
scopus-2013-0631.pdf362,87 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.