Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/27413
Title: | Spectral criterion of stochastic stability for invariant manifolds 1 |
Authors: | Ryashko, L. B. Bashkirtseva, I. A. |
Issue Date: | 2013 |
Citation: | Ryashko L. B. Spectral criterion of stochastic stability for invariant manifolds 1 / L. B. Ryashko, I. A. Bashkirtseva // Cybernetics and Systems Analysis. — 2013. — Vol. 49. — № 1. — P. 69-76. |
Abstract: | The mean square stability for invariant manifolds of nonlinear stochastic differential equations is considered. The stochastic stability analysis is reduced to the estimation of the spectral radius of some positive operator. For the important case of manifolds with codimension one, a constructive spectral analysis of this operator is carried out. On the basis of this spectral technique, parametrical criteria of the stochastic stability of limit cycle and 2-torus are developed. © 2013 Springer Science+Business Media New York. |
Keywords: | INVARIANT MANIFOLDS SPECTRAL CRITERION STOCHASTIC STABILITY CODIMENSION INVARIANT MANIFOLDS LIMIT CYCLE MEAN SQUARE STABILITY POSITIVE OPERATOR SPECTRAL CRITERIA SPECTRAL RADII SPECTRAL TECHNIQUES STOCHASTIC DIFFERENTIAL EQUATIONS STOCHASTIC STABILITY SPECTRUM ANALYSIS STOCHASTIC SYSTEMS STABILITY CRITERIA |
URI: | http://elar.urfu.ru/handle/10995/27413 |
SCOPUS ID: | 84873708404 |
WOS ID: | 000217806400009 |
PURE ID: | 905924 |
ISSN: | 1060-0396 |
DOI: | 10.1007/s10559-013-9486-3 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
scopus-2013-0566.pdf | 112,59 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.