Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/27220
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Permikin, D. V. | en |
dc.contributor.author | Zverev, V. S. | en |
dc.date.accessioned | 2014-11-29T19:46:21Z | - |
dc.date.available | 2014-11-29T19:46:21Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Permikin D. V. Mathematical model on surface reaction diffusion in the presence of front chemical reaction / D. V. Permikin, V. S. Zverev // International Journal of Heat and Mass Transfer. — 2013. — Vol. 57. — № 1. — P. 215-221. | en |
dc.identifier.issn | 0017-9310 | - |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | be2ca22b-aab6-437d-b950-29b40611fe20 | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84868335567 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/27220 | - |
dc.description.abstract | The article discusses a mathematical model of solid-phase diffusion over substance surface accompanied a frontal chemical reaction. The purpose of our article is to describe the concentration distribution and surface reacted layer growth. The model is a system parabolic equations, complicated with the presence of mobile front. It takes account of diffusive fluxes redistribution, sublimation from the surface, chemical reaction reversibility. The asymptotic approximation of the obtained nonlinear problem is constructed. Numerical solution was also carried out. Both numerical and analytical solutions conform to each other in a wide range of parameter changes, whereas observed differences are explained. It was obtained that the reaction front at the substrate surface grows as the fourth root of time in the assumed absence of evaporation and reaction reversibility. In the presence of evaporation the logarithmic distribution law ln(t) is obtained. The theoretical possibility of sharp deceleration and stop of reaction product layer growth is obtained. © 2012 Elsevier Ltd. All rights reserved. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.source | International Journal of Heat and Mass Transfer | en |
dc.subject | ASYMPTOTIC AND NUMERIC SOLUTION | en |
dc.subject | SURFACE REACTION DIFFUSION | en |
dc.subject | SYSTEM OF NONLINEAR PARABOLIC EQUATIONS | en |
dc.subject | UNKNOWN MOVING BOUNDARY | en |
dc.subject | ASYMPTOTIC APPROXIMATION | en |
dc.subject | CONCENTRATION DISTRIBUTIONS | en |
dc.subject | DIFFUSIVE FLUX | en |
dc.subject | LOGARITHMIC DISTRIBUTION | en |
dc.subject | MOVING BOUNDARIES | en |
dc.subject | NONLINEAR PARABOLIC EQUATIONS | en |
dc.subject | NONLINEAR PROBLEMS | en |
dc.subject | NUMERIC SOLUTIONS | en |
dc.subject | NUMERICAL SOLUTION | en |
dc.subject | PARABOLIC EQUATIONS | en |
dc.subject | PARAMETER CHANGES | en |
dc.subject | PRODUCT LAYER | en |
dc.subject | REACTED LAYERS | en |
dc.subject | REACTION DIFFUSION | en |
dc.subject | REACTION FRONT | en |
dc.subject | SOLID-PHASE DIFFUSION | en |
dc.subject | SUBSTRATE SURFACE | en |
dc.subject | EVAPORATION | en |
dc.subject | MATHEMATICAL MODELS | en |
dc.subject | PARTIAL DIFFERENTIAL EQUATIONS | en |
dc.subject | PHASE TRANSITIONS | en |
dc.subject | SURFACE REACTIONS | en |
dc.subject | DIFFUSION | en |
dc.title | Mathematical model on surface reaction diffusion in the presence of front chemical reaction | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.type | info:eu-repo/semantics/article | en |
dc.identifier.doi | 10.1016/j.ijheatmasstransfer.2012.10.024 | - |
dc.identifier.scopus | 84868335567 | - |
local.affiliation | Department of Mathematical Physics, Urals Federal University, Lenin Ave. 51, Ekaterinburg 620083, Russian Federation | en |
local.contributor.employee | Пермикин Дмитрий Владимирович | ru |
local.contributor.employee | Зверев Владимир Сергеевич | ru |
local.description.firstpage | 215 | - |
local.description.lastpage | 221 | - |
local.issue | 1 | - |
local.volume | 57 | - |
dc.identifier.wos | 000313466900023 | - |
local.contributor.department | Институт естественных наук и математики | ru |
local.identifier.pure | 900765 | - |
local.identifier.eid | 2-s2.0-84868335567 | - |
local.identifier.wos | WOS:000313466900023 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
scopus-2013-0390.pdf | 625,25 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.