Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/27220
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPermikin, D. V.en
dc.contributor.authorZverev, V. S.en
dc.date.accessioned2014-11-29T19:46:21Z-
dc.date.available2014-11-29T19:46:21Z-
dc.date.issued2013-
dc.identifier.citationPermikin D. V. Mathematical model on surface reaction diffusion in the presence of front chemical reaction / D. V. Permikin, V. S. Zverev // International Journal of Heat and Mass Transfer. — 2013. — Vol. 57. — № 1. — P. 215-221.en
dc.identifier.issn0017-9310-
dc.identifier.other1good_DOI
dc.identifier.otherbe2ca22b-aab6-437d-b950-29b40611fe20pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84868335567m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/27220-
dc.description.abstractThe article discusses a mathematical model of solid-phase diffusion over substance surface accompanied a frontal chemical reaction. The purpose of our article is to describe the concentration distribution and surface reacted layer growth. The model is a system parabolic equations, complicated with the presence of mobile front. It takes account of diffusive fluxes redistribution, sublimation from the surface, chemical reaction reversibility. The asymptotic approximation of the obtained nonlinear problem is constructed. Numerical solution was also carried out. Both numerical and analytical solutions conform to each other in a wide range of parameter changes, whereas observed differences are explained. It was obtained that the reaction front at the substrate surface grows as the fourth root of time in the assumed absence of evaporation and reaction reversibility. In the presence of evaporation the logarithmic distribution law ln(t) is obtained. The theoretical possibility of sharp deceleration and stop of reaction product layer growth is obtained. © 2012 Elsevier Ltd. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.sourceInternational Journal of Heat and Mass Transferen
dc.subjectASYMPTOTIC AND NUMERIC SOLUTIONen
dc.subjectSURFACE REACTION DIFFUSIONen
dc.subjectSYSTEM OF NONLINEAR PARABOLIC EQUATIONSen
dc.subjectUNKNOWN MOVING BOUNDARYen
dc.subjectASYMPTOTIC APPROXIMATIONen
dc.subjectCONCENTRATION DISTRIBUTIONSen
dc.subjectDIFFUSIVE FLUXen
dc.subjectLOGARITHMIC DISTRIBUTIONen
dc.subjectMOVING BOUNDARIESen
dc.subjectNONLINEAR PARABOLIC EQUATIONSen
dc.subjectNONLINEAR PROBLEMSen
dc.subjectNUMERIC SOLUTIONSen
dc.subjectNUMERICAL SOLUTIONen
dc.subjectPARABOLIC EQUATIONSen
dc.subjectPARAMETER CHANGESen
dc.subjectPRODUCT LAYERen
dc.subjectREACTED LAYERSen
dc.subjectREACTION DIFFUSIONen
dc.subjectREACTION FRONTen
dc.subjectSOLID-PHASE DIFFUSIONen
dc.subjectSUBSTRATE SURFACEen
dc.subjectEVAPORATIONen
dc.subjectMATHEMATICAL MODELSen
dc.subjectPARTIAL DIFFERENTIAL EQUATIONSen
dc.subjectPHASE TRANSITIONSen
dc.subjectSURFACE REACTIONSen
dc.subjectDIFFUSIONen
dc.titleMathematical model on surface reaction diffusion in the presence of front chemical reactionen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.typeinfo:eu-repo/semantics/articleen
dc.identifier.doi10.1016/j.ijheatmasstransfer.2012.10.024-
dc.identifier.scopus84868335567-
local.affiliationDepartment of Mathematical Physics, Urals Federal University, Lenin Ave. 51, Ekaterinburg 620083, Russian Federationen
local.contributor.employeeПермикин Дмитрий Владимировичru
local.contributor.employeeЗверев Владимир Сергеевичru
local.description.firstpage215-
local.description.lastpage221-
local.issue1-
local.volume57-
dc.identifier.wos000313466900023-
local.contributor.departmentИнститут естественных наук и математикиru
local.identifier.pure900765-
local.identifier.eid2-s2.0-84868335567-
local.identifier.wosWOS:000313466900023-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
scopus-2013-0390.pdf625,25 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.