Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/27130
Title: Generalized solutions of differential-operator equations with singular white noise
Authors: Melnikova, I. V.
Issue Date: 2013
Citation: Melnikova I. V. Generalized solutions of differential-operator equations with singular white noise / I. V. Melnikova // Differential Equations. — 2013. — Vol. 49. — № 4. — P. 475-486.
Abstract: In various distribution spaces, we study the Cauchy problem for the equation u′(t) = Au(t)+BW(t), t ≥ 0, with a singular white noise W and an operator A generating various regularized semigroups in a Hilbert space. Depending on the properties of the operator A, we construct solutions generalized separately and jointly with respect to the time, random, and "space" variables. © 2013 Pleiades Publishing, Ltd.
URI: http://elar.urfu.ru/handle/10995/27130
SCOPUS ID: 84879180852
WOS ID: 000320474600008
PURE ID: 914982
ISSN: 0012-2661
DOI: 10.1134/S0012266113040083
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
scopus-2013-0303.pdf373,37 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.