Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/26762
Title: | Irregular nonlinear operator equations: Tikhonov's regularization and iterative approximation |
Authors: | Vasin, V. |
Issue Date: | 2013 |
Citation: | Vasin V. Irregular nonlinear operator equations: Tikhonov's regularization and iterative approximation / V. Vasin // Journal of Inverse and Ill-Posed Problems. — 2013. — Vol. 21. — № 1. — P. 109-123. |
Abstract: | A problem of iterative approximation is investigated for a nonlinear operator equation regularized by the Tikhonov method. The Levenberg-Marquardt method, its modified analogue, and the steepest descent method are used. For the first and second methods the regularizing properties of iterations are established and the error of approximate solution is given. For the third method it was proved that iterations are stabilized in a neighborhood of the required solution and satisfy the strong Fejйr property. © 2013 by Walter de Gruyter Berlin Boston 2013. |
Keywords: | CONVERGENCE RATE ITERATIVE REGULARIZATION LEVENBERG-MARQUARDT METHOD SOURCE CONDITION STEEPEST DESCENT METHOD APPROXIMATE SOLUTION CONVERGENCE RATES ITERATIVE APPROXIMATIONS ITERATIVE REGULARIZATION LEVENBERG-MARQUARDT METHOD NONLINEAR OPERATOR EQUATIONS SOURCE CONDITIONS TIKHONOV METHOD MATHEMATICAL OPERATORS STEEPEST DESCENT METHOD ITERATIVE METHODS |
URI: | http://elar.urfu.ru/handle/10995/26762 |
SCOPUS ID: | 84876540578 |
WOS ID: | 000314635200005 |
PURE ID: | 902564 |
ISSN: | 0928-0219 |
DOI: | 10.1515/jip-2012-0084 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
scopus-2013-0110.pdf | 186,1 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.