Please use this identifier to cite or link to this item: https://elar.urfu.ru/handle/10995/142788
Title: Building Predictive Models of Agricultural Commodity Prices Based on Machine Learning Methods
Authors: Adanin, K.
Balungu, D.
Issue Date: 2025
Publisher: Издательство Издательский Дом «Ажур»
Citation: Adanin K. Building Predictive Models of Agricultural Commodity Prices Based on Machine Learning Methods / K. Adanin, D. Balungu. — Текст : электронный // Российские регионы в фокусе перемен : сборник докладов XIX Международной конференции (Екатеринбург, 14–16 ноября 2024 г.). — Екатеринбург : Издательство Издательский Дом «Ажур», 2025. — C. 794-798.
Abstract: The agricultural sector is volatile, requiring robust predictive models to forecast commodity prices. This study uses machine learning methods to build predictive models using various algorithms. The research uses historical price data and climatic data to identify patterns influencing market trends. Machine learning models significantly outperform traditional statistical methods, providing actionable insights for farmers, traders, and policymakers. Future research should explore real-time data integration and adaptive models for dynamic market conditions.
Keywords: AGRICULTURAL COMMODITY
PRICE PREDICTION
MACHINE LEARNING
TIME SERIES ANALYSIS
URI: http://elar.urfu.ru/handle/10995/142788
Conference name: XIX Международная конференция «Российские регионы в фокусе перемен»
Conference date: 16.11.2023-18.11.2024
ISBN: 978-5-91256-730-8
Origin: Российские регионы в фокусе перемен : сборник докладов – 2024. – Екатеринбург, 2025
Appears in Collections:Междисциплинарные конференции, семинары, сборники

Files in This Item:
File Description SizeFormat 
978-5-91256-730-8_178.pdf462,36 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.