Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141731
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBashkirtseva, I.en
dc.date.accessioned2025-02-25T11:02:24Z-
dc.date.available2025-02-25T11:02:24Z-
dc.date.issued2024-
dc.identifier.citationBashkirtseva, I. (2024). Approximations in Mean Square Analysis of Stochastically Forced Equilibria for Nonlinear Dynamical Systems. Mathematics, 12(14), [2199]. https://doi.org/10.3390/math12142199apa_pure
dc.identifier.issn2227-7390-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85199913396&doi=10.3390%2fmath12142199&partnerID=40&md5=7a2fee4f056eeb99253087b968b7cd6b1
dc.identifier.otherhttps://www.mdpi.com/2227-7390/12/14/2199/pdf?version=1720849295pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141731-
dc.description.abstractMotivated by important applications to the analysis of complex noise-induced phenomena, we consider a problem of the constructive description of randomly forced equilibria for nonlinear systems with multiplicative noise. Using the apparatus of the first approximation systems, we construct an approximation of mean square deviations that explicitly takes into account the presence of multiplicative noises, depending on the current system state. A spectral criterion of existence and exponential stability of the stationary second moments for the solution of the first approximation system is presented. For mean square deviation, we derive an expansion in powers of the small parameter of noise intensity. Based on this theory, we derive a new, more accurate approximation of mean square deviations in a general nonlinear system with multiplicative noises. This approximation is compared with the widely used approximation based on the stochastic sensitivity technique. The general mathematical results are illustrated with examples of the model of climate dynamics and the van der Pol oscillator with hard excitement. © 2024 by the author.en
dc.description.sponsorshipRussian Science Foundation, RSF, (N 24-11-00097)en
dc.description.sponsorshipThis work was supported by the Russian Science Foundation (N 24-11-00097).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceMathematics2
dc.sourceMathematicsen
dc.subjectAPPROXIMATIONSen
dc.subjectDISPERSIONen
dc.subjectMULTIPLICATIVE NOISEen
dc.subjectSECOND MOMENTSen
dc.subjectSTOCHASTIC EQUILIBRIAen
dc.titleApproximations in Mean Square Analysis of Stochastically Forced Equilibria for Nonlinear Dynamical Systemsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/math12142199-
dc.identifier.scopus85199913396-
local.contributor.employeeBashkirtseva I., Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina 51, Ekaterinburg, 620000, Russian Federationen
local.issue14-
local.volume12-
dc.identifier.wos001277067200001-
local.contributor.departmentInstitute of Natural Sciences and Mathematics, Ural Federal University, Lenina 51, Ekaterinburg, 620000, Russian Federationen
local.identifier.pure61566411-
local.description.order2199
local.identifier.eid2-s2.0-85199913396-
local.fund.rsfN 24-11-00097)
local.fund.rsfThis work was supported by the Russian Science Foundation (N 24-11-00097).
local.identifier.wosWOS:001277067200001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85199913396.pdf815,6 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.