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Abstract: Motivated by important applications to the analysis of complex noise-induced phenomena,
we consider a problem of the constructive description of randomly forced equilibria for nonlinear
systems with multiplicative noise. Using the apparatus of the first approximation systems, we
construct an approximation of mean square deviations that explicitly takes into account the presence
of multiplicative noises, depending on the current system state. A spectral criterion of existence and
exponential stability of the stationary second moments for the solution of the first approximation
system is presented. For mean square deviation, we derive an expansion in powers of the small
parameter of noise intensity. Based on this theory, we derive a new, more accurate approximation of
mean square deviations in a general nonlinear system with multiplicative noises. This approximation
is compared with the widely used approximation based on the stochastic sensitivity technique. The
general mathematical results are illustrated with examples of the model of climate dynamics and the
van der Pol oscillator with hard excitement.
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1. Introduction

Currently, nonlinear stochastic phenomena such as noise-induced transitions [1–3],
stochastic excitement [4–7], noise-induced crisis [8,9], stochastic bifurcations [10–12], noise-
induced chaos [13–15], and stochastic and coherence resonances [16–19] are being actively
studied in various fields of the natural sciences. One of the key mechanisms of such effects
is associated with the transition of random trajectories through separatrices detaching
basins of coexisting attractors.

In the analysis of such stochastic phenomena, the Monte Carlo method using direct
numerical simulation is frequently used [20]. However, in the detailed parametric analysis,
this numerical method is extremely time consuming and labor intensive. It is known that a
full mathematical description of probability density functions is given by the Kolmogorov–
Fokker–Planck Equation [21]. However, even in a two-dimensional case, a direct solution
of this equation faces serious mathematical difficulties. In these circumstances, asymptotics
and approximations are very useful. Here, asymptotics based on the quasipotential are of
particular interest [22,23]. Nowadays, a new geometrical method of confidence domains
is used for the approximation of probabilistic distributions. This approach allows one
not only to describe the dispersion of random states near the deterministic attractor but
also to estimate the critical values of the intensity of random disturbances that generate
noise-induced transitions [24,25].

The main idea of this approach is as follows. As the noise intensity increases, the size
of the confidence domain increases. The critical value of the noise intensity is found from
the condition of the intersection of the confidence domain and the separatrix. The key
parameter that determines the configuration of the confidence domain is the stochastic
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sensitivity of the attractor [26]. Initially, the stochastic sensitivity technique was introduced
in connection with the approximation [27] of a quasipotential [22] in the vicinity of an
attractor. Currently, this technique has been developed for regular and chaotic attractors of
both continuous and discrete systems (see, e.g., [28,29]). The stochastic sensitivity technique
and the associated confidence domains method are effectively used in the analysis of
nonlinear stochastic phenomena [30,31] and control problems [32,33].

Using the stochastic sensitivity technique, an approximation of the mean square
deviations of random states of a stochastic system from the deterministic attractor is
constructed. Although formally this technique is applicable to both the case of additive
and parametric noise, in the case of parametric noise, the error in the corresponding
approximations may be such that the prediction made on the basis of this approximation
may turn out to be incorrect.

This paper is devoted to the problem of the approximation of probabilistic distributions
of random states around stable equilibria of stochastic differential Ito’s equations with
general multiplicative noise. The main contribution of this paper is that we construct an
approximation of mean square deviations that explicitly takes into account the impact of
multiplicative noises. This more accurate approximation is compared with the previously
used approximation based on the stochastic sensitivity technique. The constructive abilities
of these general mathematical results are illustrated with examples. For a linear one-
dimensional model, we compare two approximations of mean square deviations and
derive an explicit formula for the relative error. For a two-dimensional nonlinear climate
model, explicit formulas for matrices of mean square deviations are found and compared
with the results of a direct numerical simulation. Using a model of a van der Pol oscillator
with hard excitement, we show how a new, more accurate approximation makes it possible
to predict the occurrence of large-amplitude stochastic oscillations.

2. Mean Square Analysis of Stochastic Equilibria

Consider a nonlinear autonomous system of ordinary differential equations

dx = f (x)dt, (1)

where x is an n-dimensional vector and f (x) is a sufficiently smooth n-vector function. It is
assumed that the system (1) has an exponentially stable equilibrium x̄.

Definition 1. The equilibrium x̄ is called exponentially stable in system (1) if for some neighborhood
U of x̄ there exist constants K > 0, l > 0 such that for all t ⩾ 0 it holds that

∥x(t)− x̄∥ ⩽ Ke−lt∥x0 − x̄∥,

where x(t) is a solution of the system (1) with the initial condition x(0) = x0 ∈ U. Here, ∥ · ∥ is
the Euclidean norm.

Along with the deterministic system (1), let us consider the stochastic Ito system

dx = f (x)dt +
k

∑
i=1

σi(x)dwi(t), (2)

where σi(x) are sufficiently smooth n-vector functions and wi(t) are scalar standard inde-
pendent Wiener processes. The functions σi(x) model the dependence of multiplicative
disturbances on the system state. It is worth noting that multiplicative noises are widely
studied in systems of different nature, e.g., climate models, ecological systems, biological
systems, robotics, financial systems, etc.

Solutions of the stochastic system (2), leaving the deterministic equilibrium x̄ under the
influence of random disturbances, form some probability distribution. It is assumed that the
probabilistic distribution of the states of the system (2) stabilizes. The corresponding stable
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stationary distribution density satisfies the Fokker–Planck–Kolmogorov Equation [21,22].
It is known that in general cases, it is very difficult to directly use this equation to describe
probability distributions, even for two-dimensional systems. Here, the apparatus of the
first approximation systems is useful.

2.1. First Approximation System and Its Mean Square Analysis

Let us consider the deviation z = x − x̄ of the random state x of the system (2) from
the exponentially stable equilibrium x̄ of the system (1). The dynamics of the variable z are
governed by the following first approximation linear system:

dz = Fzdt +
k

∑
i=1

(S0,i + S1,iz)dwi, (3)

where
F =

∂ f
∂x

(x̄), S0,i = σi(x̄), S1,i =
∂σi
∂x

(x̄).

In our mean square analysis of the system (3) solutions, we will use first (m) and second
(M) moments: m = E(z), M = E(zz⊤). The dynamics of these deterministic characteristics
are described by the following equations:

ṁ = Fm, (4)

Ṁ = FM + MF⊤ +
k

∑
i=1

(
S0,iS⊤

0,i + S0,im⊤S⊤
1,i + S1,imS⊤

0,i + S1,i MS⊤
1,i

)
. (5)

To find an approximation of the dispersion of stationary distributed random states of the
nonlinear stochastic system (2) around the deterministic equilibrium x̄, we will use the
stationary solutions of the system (4), (5).

Due to the exponential stability of the equilibrium x̄, it holds that Reλi(F) < 0, where
λi(F), i = 1, ..., n, are eigenvalues of the matrix F. In these circumstances, the system (4) has
a unique stationary stable solution m̄ = 0. Substituting m̄ = 0 into (5), we obtain

Ṁ = FM + MF⊤ +
k

∑
i=1

(
S0,iS⊤

0,i + S1,i MS⊤
1,i

)
. (6)

So, the matrix M̄ of the stationary solution of Equation (6) satisfies the following alge-
braic equation:

FM̄ + M̄F⊤ +
k

∑
i=1

(
S0,iS⊤

0,i + S1,i M̄S⊤
1,i

)
= 0. (7)

Let us consider a deviation ∆(t) = M(t)− M̄ where M(t) is a solution of Equation (6).
For the function ∆(t), one obtains the homogeneous equation

∆̇ = F∆ + ∆F⊤ +
k

∑
i=1

S1,i∆S⊤
1,i. (8)

The matrix ∆(t) is the matrix of second moments ∆(t) = Ey(t)y(t)⊤ for solutions y(t) of
linear homogeneous stochastic equation

dy = Fydt +
k

∑
i=1

S1,iydwi. (9)

Thus, the question about stability of the stationary solution M̄ of Equation (6) is reduced to
the equivalent question about the exponential mean square stability of the trivial solution
y = 0 of the stochastic system (9).
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Definition 2. Solution y ≡ 0 of the stochastic system (9) is called exponentially stable in mean
square, if there exist constants K > 0, l > 0 such that for all t ⩾ 0 it holds that

E∥y(t)∥2 ⩽ Ke−lt E∥y0∥2,

where y(t) is a solution of the system (9) with the initial condition y(0) = y0.

Let us consider the matrix S0 = ∑k
i=1 S0,iS⊤

0,i and operators

A[M] = FM + MF⊤, S [M] =
k

∑
i=1

S1,i MS⊤
1,i, P = −A−1S .

Rewrite Equations (6)–(8) as follows:

Ṁ = A[M] + S(M) + S0, (10)

A[M̄] + S [M̄] + S0 = 0, (11)

∆̇ = A[∆] + S [∆]. (12)

Note that the existence of the operator A−1 follows from the condition Reλi(F) < 0.
Basic theoretical connections are presented in the following theorem.

Theorem 1. The following statements are equivalent:

(a) System (10) has a stationary exponentially stable solution M̄ satisfying (11);
(b) The solution ∆ ≡ 0 of the system (12) is exponentially stable;
(c) The solution y ≡ 0 of the stochastic system (9) is exponentially stable in mean square;
(d) It holds that Reλi(F) < 0 (i = 1, ..., n) and ρ(P) < 1, where ρ(P) is the spectral radius of

the operator P .

The statements of this theorem were proven or follow from more general results
presented in [34–36].

Remark 1. In the one-dimensional case (n = 1), we have

S0 =
k

∑
i=1

σ2
i (x̄), A[M] = 2 f

′
(x̄)M, S [M] =

k

∑
i=1

(
σ
′
i (x̄)

)2
M,

and the condition ρ(P) < 1 has an explicit parametric representation

ρ(P) = − 1
2 f ′(x̄)

k

∑
i=1

(
σ
′
i (x̄)

)2
< 1.

In this case, for the mean square variance of random states around the equilibrium x̄, the following
estimation can be written

M = − ∑k
i=1 σ2

i (x̄)

2 f ′(x̄) + ∑k
i=1

(
σ
′
i (x̄)

)2 . (13)

2.2. Asymptotics for the Case of Weak Noise: Stochastic Sensitivity of the Equilibrium

Consider the stochastic system with weak noises as follows:

dx = f (x)dt + ε
k

∑
i=1

σi(x)dwi(t). (14)



Mathematics 2024, 12, 2199 5 of 12

Here, ε is a scalar small parameter of the intensity of random disturbances. For this system,
Equation (11) for the covariance matrix M of the equilibrium x̄ has the form

A[M] + ε2S [M] + ε2S0 = 0. (15)

Let us study the dependence of the solution M(ε) of this equation on the parameter ε. Let
W(ε) be the solution to the equation

A[W] + ε2S [W] + S0 = 0. (16)

Then M(ε) = ε2W(ε). For W(ε), one can write the following decomposition:

W(ε) = −(A+ ε2S)−1[S0] = −
(

I + ε2A−1S
)−1

A−1[S0] =

=
(

I − ε2P
)−1

[W(0)].

For small ε, it holds that

W(ε) =
∞

∑
m=0

ε2mPm[W(0)] = W(0) + ε2P [W(0)] + ε4P2[W(0)] + ...

As a result, for the matrix function M(ε) we obtain the expansion in powers of the small
parameter, as follows:

M(ε) =
∞

∑
m=0

ε2m+2Pm[W(0)] = ε2W(0) + ε4P [W(0)] + ε6P2[W(0)]... (17)

In this series, the matrix W(0) plays an important role in the asymptotic analysis of the
dispersion of random states around the equilibrium. Because of W(0) = limε→0

1
ε2 M(ε),

this matrix characterizes the stochastic sensitivity of the equilibrium [26] to the impact of
weak noise. Thus, in the first approximation, we have

M(ε) ≈ M(1)(ε) = ε2W, (18)

where W is a solution of the following equation

FW + WF⊤ + S0 = 0. (19)

If the noise in the system (14) does not depend on the state, then P = 0 and the first
approximation coincides with the exact value M(ε) = ε2W. In general, using W as an
approximation for M(ε), one obtains an underestimation of the covariance of random
states. Indeed, since the operator P is positive [37], the inequality M(ε) ⪰ ε2W is valid.

In a one-dimensional case, the stochastic sensitivity of the equilibrium x̄ for the
system (14) is given by the formula

W = −∑k
i=1 σ2

i (x̄)
2 f ′(x̄)

. (20)

3. Examples

Let us consider how these theoretical results can be applied to the approximation of
mean square deviation of random states from the equilibrium in some stochastic systems.
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Example 1. Consider a simple one-dimensional stochastic system

dx = −axdt + ε(σ1dw1(t) + σ2xdw2(t)),

where a, σ1, and σ2 are non-negative parameters, ε is the intensity of random disturbances, wi(t)
are uncorrelated scalar Wiener processes. The parameters σ1 and σ2 specify the weights of additive
and multiplicative disturbances, accordingly.

For a > 0, the corresponding deterministic system (with ε = 0) has an exponentially
stable equilibrium x̄ = 0. Second moments M(t) = E(x(t)− x̄)2 of deviations of solutions
x(t) from the equilibrium satisfy the equation

Ṁ = −2aM + ε2(σ2
1 + σ2

2 M).

This equation has a stationary solution

M(ε) =
ε2σ2

1
2a − ε2σ2

2
.

Following the decomposition (17), for weak noise, M(ε) has the following asymptotics:

M(ε) = ε2W + O(ε4),

where W characterizes the stochastic sensitivity of the equilibrium x̄. Here, W satisfies
(see (19)) the equation:

−2aW + σ2
1 = 0.

Using W, one can write the first approximation for the function M(ε):

M(1)(ε) = ε2W =
ε2σ2

1
2a

.

Formally, the approximation M(1)(ε) is defined for any a > 0 while the approximated

function M(ε) is defined only for a >
ε2σ2

2
2 . In absence of multiplicative noise (σ2 = 0),

the values M(1) and M are identical. At σ2 ̸= 0, they can essentially differ.
This difference is clearly seen in Figure 1 where plots of the functions M (solid line)

and M(1) (dashed line) are shown versus parameter a. Note that the approximation M(1)

is always less than M (this fact was shown above for the general case). Moreover, in the

interval 0 < a <
ε2σ2

2
2 , where the approximation gives finite values, the original function

is not defined at all: the second moments M(t) tend to infinity. In the interval a >
ε2σ2

2
2 ,

the approximation error monotonically increases and tends to infinity as it approaches the

bifurcation value a∗ =
ε2σ2

2
2 . For the relative error, an explicit representation can be written

as follows: ∣∣∣∣∣ M − M(1)

M

∣∣∣∣∣ = ε2σ2
2

2a
.

Let us continue the comparison of these two methods for estimating the dispersion of
random states around the equilibrium using the two-dimensional systems as examples.
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ε2σ2
2

2
a0

M

Figure 1. Stationary second moments M (solid line) and approximation M(1) (dashed) versus
parameter a.

Example 2. Consider a stochastic version of the two-dimensional model [38] of climate dynamics:

dx = (y − x)dt
dy = (−ax + by − x2y)dt + ε(σ1dw1 + σ2ydw2).

(21)

Here, the variable x describes the marine ice latitude, y stands for the ocean temperature. In model
(21), σ1 and σ2 characterize intensities of the additive and multiplicative noises, respectively,
w1(t), w2(t) are scalar standard independent Wiener processes, and ε is the small parameter. The
deterministic system (21) (with ε = 0 therein) has the equilibrium E(0, 0). For this equilibrium,
the Jacobi matrix is

F =

[
−1 1
−a b

]
.

The equilibrium E(0, 0) is exponentially stable if b < 1 and b < a.

As it follows from the theory presented above, the covariance matrix M =

[
m11 m12
m21 m22

]
of random states of the stochastic climate model (21) near the equilibrium E(0, 0) satisfies
Equation (15), where

S [M] =

[
0 0
0 σ2

2 m22

]
, S0 =

[
0 0
0 σ2

1

]
.

For elements of the symmetric matrix M, the following system can be written as follows:
−2m11 + 2m12 = 0,
−am11 + (b − 1)m12 + m22 = 0,
−2am12 + 2bm22 + ε2σ2

2 m22 + ε2σ2
1 = 0.

This system has an explicit solution, as follows:

m11 = m12 =
ε2σ2

1
2a + (2b + ε2σ2

2 )(b − a − 1)
, m22 =

ε2σ2
1 (a + 1 − b)

2a + (2b + ε2σ2
2 )(b − a − 1)

. (22)

The first approximation matrix M(1) from (18) for the model (21) has elements

m(1)
11 = m(1)

12 =
ε2σ2

1
2a + 2b(b − a − 1)

, m(1)
22 =

ε2σ2
1 (a + 1 − b)

2a + 2b(b − a − 1)
. (23)
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The accuracy of the approximation M and M(1) can be seen in Figure 2. Here, for the
fixed values a = 1, b = 0.9, σ1 = 0.1, σ2 = 10, mean square deviations E(x2) and E(y2)
(asterisks) were calculated via direct numerical simulation of solutions of the nonlinear
stochastic model (21). Approximations m11(ε) and m22(ε) found from (22) are plotted here
by solid lines, and approximations m(1)

11 (ε) and m(1)
22 (ε) found from (23) are plotted by

dashed lines. As can be seen, m11(ε) and m22(ε) agree well with results of direct numerical
simulations while m(1)

11 (ε) and m(1)
22 (ε) significantly underestimate E(x2) and E(y2).

Figure 2. Stochastic system (21) with a = 1, b = 0.9, σ1 = 0.1, σ2 = 10. Here, mean square deviations
E(x2) (left) and E(y2) (right) calculated via the direct numerical simulation of system (21) solutions
for different ε are shown by asterisks. Approximations m11(ε) (left) and m22(ε) (right) are plotted by

solid curves. Approximations m(1)
11 (ε) (left) and m(1)

22 (ε) (right) are plotted by dashed curves.

Example 3. Consider the van der Pol model with hard excitation of self-oscillations, as follows:

dx = ydt
dy = (−x + (a + bx2 − x4)y)dt + σ1dw1 + σ2ydw2.

(24)

Here, σ1 is the intensity of the additive noise, σ2 is the intensity of the multiplicative noise,
and w1(t), w2(t) are scalar standard independent Wiener processes.

Let us fix a = −0.1, b = 2. For this set of parameters, the deterministic system (24)
with σ1 = σ2 = 0 is bistable and exhibits the coexisting attractors: the stable equilibrium
x̄ = 0, ȳ = 0 and stable limit cycle. Basins of these attractors are separated by the orbit of
the unstable limit cycle. In Figures 3a and 4a, the equilibrium is shown by a black filled
circle, the stable cycle is plotted by a blue curve, and the unstable cycle (the separatrix) is
shown by a red curve.

−2 −1 0 1 2
−4

−2

0

2

x

y

(a)

0 100 200 300 400

−2

−1

0

1

2

x

t

(b)

Figure 3. Stochastic system (24) with σ1 = 0.02, σ2 = 0.2: (a) random trajectory (green) of the
solution starting at the equilibrium (0, 0); (b) time series.
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−2 −1 0 1 2
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−4

−2
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2

4

x

y

(a)

0 100 200 300 400

−2

−1

0

1

2

x

t

(b)

Figure 4. Stochastic system (24) with σ1 = 0.05, σ2 = 0.4: (a) random trajectory (green) of the
solution starting at the equilibrium (0, 0); (b) time series.

Let us consider the behavior of trajectories of the stochastic system (24) solutions
starting at the equilibrium (0, 0). Under the influence of weak random disturbances,
trajectories leave the stable equilibrium and form a stationary probability distribution
concentrated in a small neighborhood of the origin. These types of dynamics correspond to
the unexcited mode of the oscillator (see Figure 3 for σ1 = 0.02, σ2 = 0.2).

As the noise intensity increases, random trajectories cross the separatrix (unstable
limit cycle) and continue to oscillate near the stable cycle. This means a transition to the
excitation mode (see Figure 3 for σ1 = 0.05, σ2 = 0.4).

For the analytical approximation of the dispersion of random states, we will use the
theory presented above.

For system (24), the parameters of Equation (7) are as follow:

F =

[
0 1
−1 a

]
, M =

[
m11 m12
m21 m22

]
,

S0,1 = σ1

[
0
1

]
, S0,2 =

[
0
0

]
, S1,1 =

[
0 0
0 0

]
, S1,2 = σ2

[
0 0
0 1

]
.

Now, we can write the matrix Equation (7) as the following system for the elements mij of
the symmetric matrix M:

−m11 + am12 + m22 = 0, m12 = m21 = 0, −2m12 + 2am22 + σ2
1 + σ2

2 m22 = 0.

From this system, we have solution

m11 = m22 = −
σ2

1
2a + σ2

2
, m12 = m21 = 0.

Thus, the matrix M that defines mean square deviation of random states from the equilib-
rium (0, 0) is

M = −
σ2

1
2a + σ2

2

[
1 0
0 1

]
.

Note that the asymptotic method of stochastic sensitivity gives for mean square deviation
another approximation, as follows:

M(1) = −
σ2

1
2a

[
1 0
0 1

]
.

The difference in these approximations can lead to qualitative differences in the prediction
of the results of the noise influence. Let us consider how these two estimations work in the
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context of the confidence domains method. For diagonal 2 × 2 matrices, the equation of the
confidence ellipse is written as

x2

m11
+

y2

m22
= −2 ln(1 − P).

Here, P is fiducial probability.
Confidence ellipses are effectively used in predicting noise-induced transitions through

the separatrix. Figure 5 shows two confidence ellipses constructed using the matrices M
(larger ellipse) and M(1) (smaller ellipse) for the stochastic system (24) with a = −1,
σ1 = 0.05, σ2 = 0.4. The larger ellipse captures the basin of attraction of the limit cycle,
which allows us to make a prediction about the generation of large-amplitude oscillations
(excitation mode). The smaller ellipse is entirely contained in the basin of attraction of
the stable equilibrium and therefore predicts the unexcited mode of the oscillator. As we
see, an error in estimating the second moments can lead to qualitative errors in solving
important prediction problems. Note that this prediction agrees well with the results of
direct numerical simulations (compare Figures 3–5).

−0.5 0 0.5

−0.5

0

0.5

x

y

Figure 5. Confidence ellipses (dashed) and unstable cycle (red solid) for the system (24) with
a = −1, σ1 = 0.05, σ2 = 0.4. The internal ellipse is constructed using the matrix M(1), and the
external ellipse is constructed using the matrix M. Here, fiducial probability P = 0.99.

4. Conclusions

This paper is devoted to the problem of approximating probability distributions of
random states near the equilibrium of the stochastic system with multiplicative noise.
The system of nonlinear stochastic differential Ito’s equations is used as a basic mathemati-
cal model. For a solution of the linear first approximation system, we present an algebraic
criterion of existence and exponential stability of the stationary second moments. For mean
square deviation, an expansion in powers of the small parameter of noise intensity is
derived. Using this mathematical theory, we derive a new, more accurate approximation
of mean square deviations in a general nonlinear system with multiplicative noises. This
approximation is compared with the widely used approximation based on the stochastic
sensitivity technique. The general mathematical results are applied to examples. For the
climate model, explicit formulas for matrices of mean square deviations are derived and
compared with the results of direct numerical simulation. For the van der Pol oscillator with
hard excitement, it is shown that using the elaborated more accurate approximation, one
can predict the onset of noise-induced generation of large-amplitude stochastic oscillations.
This prediction agrees well with the results of direct numerical simulations. It is worth
noting that extending the more accurate approximation obtained here for equilibrium to
the more complex cases of limit cycles and chaotic attractors is an attractive challenge.
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