Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141713
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAlexandrov, D. V.en
dc.contributor.authorMakoveeva, E. V.en
dc.contributor.authorPashko, A. D.en
dc.date.accessioned2025-02-25T11:02:21Z-
dc.date.available2025-02-25T11:02:21Z-
dc.date.issued2024-
dc.identifier.citationAlexandrov, D. V., Makoveeva, E. V., & Pashko, A. D. (2024). Wavy Ice Patterns as a Result of Morphological Instability of an Ice–Water Interface with Allowance for the Convective–Conductive Heat Transfer Mechanism. Crystals, 14(2), [138]. https://doi.org/10.3390/cryst14020138apa_pure
dc.identifier.issn2073-4352-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85185905683&doi=10.3390%2fcryst14020138&partnerID=40&md5=4fb2f562c220e42e3d78247bb487fe4f1
dc.identifier.otherhttps://www.mdpi.com/2073-4352/14/2/138/pdf?version=1706605523pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141713-
dc.description.abstractIn this research, the wavy ice patterns that form due to the evolution of morphological perturbations on the water–ice phase transition interface in the presence of a fluid flow are studied. The mathematical model of heat transport from a relatively warm fluid to a cold wall includes the mechanism of convective–conductive heat transfer in liquid and small sinusoidal perturbations of the water–ice interface. The analytical solutions describing the main state with a flat phase interface as well as its small morphological perturbations are derived. Namely, the migration velocity of perturbations and the dispersion relation are found. We show that the amplification rate of morphological perturbations changes its sign with variation of the wavenumber. This confirms the existence of two different crystallization regimes with (i) a stable (flat) interfacial boundary and (ii) a wavy interfacial boundary. The maximum of the amplification rate representing the most dangerous (quickly growing) perturbations is found. The theory is in agreement with experimental data. © 2024 by the authors.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnauka, (FEUZ-2023-0022); Ministry of Education and Science of the Russian Federation, Minobrnauka; Russian Science Foundation, RSF, (23-19-00337); Russian Science Foundation, RSFen
dc.description.sponsorshipThe present research work consists of theoretical and computational parts, which were supported by different financial sources. D.V.A. acknowledges the Russian Science Foundation (Project No. 23-19-00337) for the derivation of analytical expressions, their interpretation and analysis, as well as for the processing of experimental data. D.V.A. and E.V.M. are grateful to the Ministry of Science and Higher Education of the Russian Federation (project no. FEUZ-2023-0022) for numerical simulations carried out on the basis of the theory developed.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceCrystals2
dc.sourceCrystalsen
dc.subjectCONVECTIONen
dc.subjectCRYSTALLIZATIONen
dc.subjectHEAT TRANSFERen
dc.subjectWATER–ICE INTERFACEen
dc.subjectWAVY ICE SURFACEen
dc.titleWavy Ice Patterns as a Result of Morphological Instability of an Ice–Water Interface with Allowance for the Convective–Conductive Heat Transfer Mechanismen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/cryst14020138-
dc.identifier.scopus85185905683-
local.contributor.employeeAlexandrov D.V., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeMakoveeva E.V., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeePashko A.D., Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin, Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.issue2-
local.volume14-
dc.identifier.wos001169964000001-
local.contributor.departmentLaboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.departmentInstitute of Natural Sciences and Mathematics, Ural Federal University, Lenin, Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.identifier.pure53802910-
local.description.order138
local.identifier.eid2-s2.0-85185905683-
local.fund.rsfMinistry of Education and Science of the Russian Federation, Minobrnauka, (FEUZ-2023-0022); Ministry of Education and Science of the Russian Federation, Minobrnauka; 23-19-00337
local.identifier.wosWOS:001169964000001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85185905683.pdf539,1 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.