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Abstract: In this research, the wavy ice patterns that form due to the evolution of morphological
perturbations on the water–ice phase transition interface in the presence of a fluid flow are studied.
The mathematical model of heat transport from a relatively warm fluid to a cold wall includes the
mechanism of convective–conductive heat transfer in liquid and small sinusoidal perturbations
of the water–ice interface. The analytical solutions describing the main state with a flat phase
interface as well as its small morphological perturbations are derived. Namely, the migration velocity
of perturbations and the dispersion relation are found. We show that the amplification rate of
morphological perturbations changes its sign with variation of the wavenumber. This confirms the
existence of two different crystallization regimes with (i) a stable (flat) interfacial boundary and (ii) a
wavy interfacial boundary. The maximum of the amplification rate representing the most dangerous
(quickly growing) perturbations is found. The theory is in agreement with experimental data.
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1. Introduction

A mathematical description of phase transformations in the presence of convection
in liquid is a complex task with a moving boundary, the position of which is determined
by solving the problem. In addition, such problems are strongly complicated by various
peculiarities of the hydrodynamic flow near a phase transition boundary, leading to a mixed
convective–conductive mechanism of heat and mass transfer. Examples of such events are
the processes of water freezing in rivers, lakes, and seas, the solidification of molten metal
in a mold and magma in a magmatic chamber, and the growth of stenoses in blood vessels
leading to limited or complete cessation of blood flow (see, among others, [1–7]).

The nonlinearity of such a phase transformation problem arises for several reasons.
Firstly, convective terms appear in the heat and mass transfer equations in the moving
coordinate system connected with the growing/melting interfacial boundary [8–11]. This
is due to the fact that the ordinary derivative with respect to time can be expanded into
local and convective components. Secondly, nonlinearity may be initially involved in the
boundary conditions at the moving crystallization front when the dependence of phase
transformation temperature on impurity concentration, front curvature, and atomic kinetics
is considered [12,13]. Thirdly, in the case of turbulent fluid flow, additional diffusion terms
of turbulent heat and mass fluxes appear in the equations of heat and mass transfer [14–16].
The presence of such terms makes nonlinear the heat and mass transport in liquid due
to the strong mixing of liquid and the occurrence of complex circulation currents near
the interphase boundary [17]. Fourth, a nonlinearity of the problem arises due to the
morphological instability of the phase transformation boundary and the formation of new
periodic and/or irregular crystallization scenarios [18–24].

Crystals 2024, 14, 138. https://doi.org/10.3390/cryst14020138 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst14020138
https://doi.org/10.3390/cryst14020138
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-6628-745X
https://doi.org/10.3390/cryst14020138
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst14020138?type=check_update&version=1


Crystals 2024, 14, 138 2 of 10

The presence of convection in liquid strongly affects the heat and mass transfer near a
phase transformation boundary. For example, convection mixes the liquid phase and par-
tially levels the temperature and concentration distributions. This, in particular, leads to the
appearance of convective components in heat and mass fluxes at the liquid–solid interface.
Thus, the heat and mass fluxes at this interface become of a mixed type (conductive–
convective), i.e., they have both conductive and convective contributions [25–27]. Taking
this fact into account, a complete mathematical model of the directional crystallization
process of a binary liquid has recently been formulated with allowance for the conductive–
convective heat and mass transfer mechanism [28]. In this paper, a linear analysis of the
morphological instability of a flat crystallization front in the presence of convection was
also carried out and a new criterion for constitutional supercooling origination was derived,
which demonstrated the existence of four crystallization scenarios. The theory developed
in [28] also showed a significant influence of convection on the crystallization process as
a whole and on the stability criterion, which was thoroughly studied by various scien-
tific groups after the classical theory by Mullins and Sekerka [18] was published. Below,
we investigate the influence of convective heat transfer on the morphological stability
of the liquid–solid interface, which leads to the appearance of so-called wavy ice layers
(Figure 1) [29–34].

Figure 1. A wavy water–ice surface.

2. Morphological Stability

A wavy ice layer, as shown in Figure 1, results from the development of liquid–solid
interface instability in the hydrodynamic flow [35]. At the initial moment of time t = 0, a
groove was made on the ice surface (see Figure 8 in [35]), which transformed over time and
led to the formation of the wavy ice surface. In the course of time, the downstream side of
the groove melts to form a longer groove and the ice downstream of the groove becomes
slightly wider. Approximately 2–3 h later, a second groove begins to form downstream
about 15 cm from the initial groove. Over time, this sinusoidal-like wave propagates
downstream, leading to the formation of several waves. As this takes place, the amplitudes
of these waves also increase until the first wave downstream of the initial groove develops
a sharp crest after about t = 3 h. Subsequent waves also develop sharp crests, after which
further changes in wave amplitudes cease and a so-called wavy or ripple ice surface is
formed (wave crests are placed in a perpendicular to the flow). The waves continue to
migrate slowly downstream. In the fluid flow downstream of the crest of each wave, there
is a region of separated flow. An important point is that the ice surface is stable if it is
reverted to a planar liquid–solid surface some time after the groove has been made. On
the other hand, in the case of instability, the initial groove leads to the formation of a wavy
surface, as described above.

Let us formulate below a mathematical model of heat transfer describing the crystal-
lization process with a wavy water–ice interface shown in Figure 2. The phase interface
position si(x, t) = s0(t)+ η(x, t) is considered to be a sum of two contributions: the growing
ice layer s0 and its perturbation η(x, t) of the form

η(x, t) = A sin[k(x − ct)] exp(αt), (1)

where x and t are the spatial and time variables, respectively; A is the amplitude of
perturbations; α and k are their amplification rate and wavenumber, respectively; and c is
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the migration velocity of the surface wave. Here, the water–ice interface perturbation is
assumed to be small, i.e., |η(x, t)| ≪ s0(t).

Figure 2. A scheme of crystallization process with a wavy water–ice surface.

At the interfacial boundary, fluid currents result in a conductive–convective heat flux
at the fluid side [25–28]. In addition, the temperature continuity condition is fulfilled at this
boundary. Taking this into account, we have the following heat balance and temperature
continuity boundary conditions

ρiL
∂si
∂t

= ki
∂Ti
∂y

− kw
∂Tw

∂y
− h(T∞ − Tw), y = si,

Tw = Ti = Tf , y = si.
(2)

Here, Ti and Tw are the temperatures of ice and water, respectively, ki and kw are their
thermal conductivities, respectively, ρi is the density of ice, L is the latent heat parameter,
h is the heat-transfer coefficient, T∞ is the temperature in water far from the water–ice phase
interface, and Tf is the temperature at the phase interface. Note that the simultaneous
convective–conductive heat transfer flux at the boundary y = si represents the main novelty
of the model under consideration.

In the case of slow motion of the water–ice interface, the temperature profile of the ice
is described by the stationary heat conduction equation [36,37]

∇2Ti = 0, 0 ≤ y ≤ si(x, t). (3)

The temperature is fixed at the cold wall (bottom) y = 0, and we have the boundary condition

Ti = Twall , y = 0. (4)

The temperature distribution in ice with a perturbed interfacial boundary y = si(x, t)
can be found using the perturbation method [38]. To do this, we represent the temperature
in ice Ti as the sum of mean temperature Ti0 and its perturbation Ti1, i.e.,

Ti(x, y, t) = Ti0(y) + Ti1(x, y, t), 0 ≤ y ≤ si(x, t). (5)

In addition, we assume that [38] |Ti1| ≪ |T0|.
By expanding the second boundary condition (2) into a Taylor series on the perturbed

boundary y = si(x, t), restricting ourselves to the linear terms, and moving this boundary
to the point y = s0 assuming small perturbations |η(x, t)| ≪ s0, we obtain

Ti0 +
dTi0
dy

η + Ti1 = Tf , y = s0. (6)
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Now, equating the terms of the same order of magnitude in perturbations in (6)
and considering expressions (3) and (4), we arrive at the following problems for the
determination of temperature contributions Ti0 and Ti1

d2Ti0
dy2 = 0, 0 ≤ y ≤ s0,

Ti0 = Tf , y = s0,

Ti0 = Twall , y = 0

(7)

and

∇2Ti1 = 0, 0 ≤ y ≤ s0,

Ti1 = −dTi0
dy

η, y = s0,

Ti1 = 0, y = 0.

(8)

Their solutions read as

Ti0(y) = Twall +
Tf − Twall

s0
y (9)

and

Ti1(x, y, t) = −(Tf − Twall)
η(x, t)

s0

sinh(ky)
sinh(ks0)

, (10)

where η(x, t) is given by expression (1). Distributions (9) and (10) determine the tempera-
ture field in ice accordingly to expression (5).

Note that the heat-transfer coefficient h = h0 + h1 should be treated as the sum of the
constant main value h0 = αhρwcwu∗ [39,40] and its perturbation h1 of the form [35]

h1(x, t) = f h0 A+ sin[k(x − ct) + ϕ] exp(αt), (11)

where αh is the convective heat transfer coefficient, ρw is the density of water, u∗ is the
friction velocity, f is the perturbation amplitude, A+ = Au∗/νw, νw is the kinematic
viscosity of water, and ϕ is the phase shift between the heat transfer and water–ice
interface perturbations.

Let us now perturb the boundary conditions (2) at the water–ice interface in accordance
with the linear stability theory for small morphological perturbations [18,22,23]. Hence,
assuming that the temperature in water represents the sum of a mean quantity Tw0 and its
perturbation Tw1 (|Tw1| ≪ |Tw0|)

Tw(x, y, t) = Tw0(y) + Tw1(x, y, t), y ≥ si(x, t), (12)

expanding the boundary conditions (2) into a Taylor series on the perturbed water–ice
boundary y = si(x, t) and moving this boundary to the point y = s0, we obtain

ρiL
(

ds0

dt
+

∂η

∂t

)
= ki

dTi0
dy

+ ki
d2Ti0
dy2 η + ki

∂Ti1
∂y

− kw
dTw0

dy

−kw
d2Tw0

dy2 η − kw
∂Tw1

∂y
− (h0 + h1)

(
T∞ − Tw0 −

dTw0

dy
η − Tw1

)
, y = s0,

(13)

Tw1 +
dTw0

dy
η = 0, y = s0. (14)
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Here, Tw0 = Tf at y = s0, temperatures Ti0 and Ti1 are given by distributions (9) and (10),
respectively, and η and h1 are defined by expressions (1) and (11), respectively.

Equating now the terms of the same order of smallness in perturbations in Equation (13),
we obtain

ρiL
ds0

dt
= ki

Tf − Twall

s0
− kw

(
dTw0

dy

)
y=s0

− h0

(
T∞ − Tf

)
. (15)

ρiL
∂η

∂t
= −

ki(Tf − Twall)kη

s0tanh(ks0)
− kw

d2Tw0

dy2 η − kw
∂Tw1

∂y
− h1(T∞ − Tf ), y = s0. (16)

Note that Formulas (10) and (14) were used when deriving expression (16).
Generally speaking, the temperature derivatives dTw0/dy and d2Tw0/dy2 at y = s0 can

be the functions of s0. Therefore, expression (15) supplemented with the initial condition
s0(t) = s0(0) at t = 0 represents the standard Cauchy problem for the determination of
ice layer thickness s0(t). In the case of slow ice growth, s0 is practically independent of
time t and the left hand-side of Equation (15) can be omitted. In this case, expression (15)
represents an algebraic equation defining the ice thickness s0.

By substituting η and h1 from (1) and (11) into (16) we conclude that ∂Tw1/∂y at y = s0
should be a similar function of x and t, i.e.,(

∂Tw1

∂y

)
y=s0

= gw A+ sin[k(x − ct) + ψ] exp(αt), (17)

where gw and ψ stand for the perturbation amplitude and its phase shift.
Now combining (1), (11), (16), and (17), we find the migration velocity c and dispersion relation

c(k+) =
1

ρiLk+
(

h0(T∞ − Tf ) f sin ϕ + kwgw sin ψ
)

, (18)

α(k+) = −
h0(T∞ − Tf )u∗k+

ρiLνw

(
f cos ϕ

k+
+

ki(Tf − Twall)

h0s0(T∞ − Tf )tanh(k+u∗s0/νw)

)

− kw

ρiL

((
d2Tw0

dy2

)
y=s0

+
gwu∗ cos ψ

νw

)
,

(19)

where k+ = kνw/u∗ is the dimensionless wavenumber. Here f , ϕ, gw, and ψ can be
the functions of k+. Experiments [35] show that f and ϕ can be approximated by the
following dependencies

f (k+) = 50.44(k+)1.435, ϕ(k+) = 13.08 + 4.32 ln k+ + 0.41(ln k+)2. (20)

Note that expressions (19) and (20) derived with allowance for a mixed type of convective–
conductive heat transfer in water represent the main result of our theory.

Let us especially highlight that the temperature field Tw0(y) in liquid can be found
from various models of heat transfer in a hydrodynamic flow [25–27,41,42]. In the case of a
laminar flow, the temperature field is governed by the convective heat transfer equation. In
the case of turbulent fluid flow, the turbulent heat flux must be taken into account in the
heat transfer equation [14–16]. Another way to find the temperature distribution in liquid
is to perform an experiment that takes into account all the peculiarities of the fluid flow. If
such an experiment is performed, it is possible to fit the experimental points by means of
Tw0(y) and evaluate the derivatives dTw0/dy and d2Tw0/dy2 at y = s0 in Equation (15) and
dispersion relation (19). We use below the experimental data [35] to find the temperature
distribution Tw0(y).
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3. Results and Discussions

The migration velocity c(k+) from (18) can be rewritten in dimensionless form as

c+(k+) =
ρiLc

h0(T∞ − Tf )
= c1(k+) + c2(k+),

c1(k+) =
f (k+) sin[ϕ(k+)]

k+
, c2(k+) =

kwgw(k+) sin[ψ(k+)]
k+h0(T∞ − Tf )

.
(21)

To calculate the migration velocity and dispersion relation, we first determined s0
from the stationary Equation (15). As a result, the thickness of ice layer s0 = 19 mm at
Twall = −14.79 °C, which is in full agreement with the experimental data [35]. Then, using
s0, we illustrate the dimensionless migration velocity c+(k+) in Figure 3 for experimentally
known range of wavenumbers 0.00075 ≲ k+ ≲ 0.003 [35]. The product gw(k+) sin[ψ(k+)]
defining the coefficient c2(k+) was fitted by the function 150c1(10k+)k+ − 0.3. As is easily
seen, the migration rate increases with increasing the wavenumber of perturbations.

Figure 3. Dimensionless migration velocity of the wave c+ versus dimensionless wavenumber k+.
Physical parameters used in calculations are [28,35,43]: ρw = 999.8 kg m−3, ρi = 1000 kg m−3,
cw = 4.21 × 103 J kg−1 °C−1, kw = 0.556 J s−1 m−1 °C−1, ki = 2.16 J s−1 m−1 °C−1,
L = 3.33× 105 J kg−1, νw = 1.792 × 10−6 m2 s−1, u∗ = 0.05 m s−1, αh = 0.0095, Twall = −14.8 °C,
T∞ = 0.85 °C.

The dispersion relation (19) is shown in Figure 4 for various temperatures Twall at
the cooled wall y = 0. Namely, the process is stable for low temperature Twall = −11.5 °C
illustrated by the solid curve (amplification rate α is negative at all wavenumbers). In other
words, a groove initially made on the ice surface disappears with time and does not lead to
the formation of a wavy water–ice surface. However, the amplification rate of perturbations
grows with decreasing the wall temperature. The dashed and dash-dotted curves cross the
axis α = 0 and partially lie in the instability region (Figure 4). Such a behavior is very similar
to the classical Mullins–Sekerka theory of morphological instability of a planar solidification
front (see their Figure 1 in [18]). Note that the instability region (when a wavy water–ice
surface is formed) increases with decreasing the temperature at the cooled wall. Figure 4
also demonstrates that the maximum of amplification rate (∂α/∂k+ = 0) approximately
corresponds to the wavenumber k+m = 1.5 × 10−3. In the case of instability (α > 0), such a
wavenumber (perturbation with the corresponding wavelength λm = 2πνw/(u∗k+m)) leads
to the development of morphological perturbations. Figure 5 shows that the experimental
data of instability onset confirms this conclusion (instability occurs at a wavenumber lying
close to the value of k+m). Moreover, Figure 5 demonstrates that the Reynolds number Reδ

does not substantially influence the origination/development of morphological instability.
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Figure 4. Amplification rate of morphological perturbations α versus dimensionless wavenumber
k+. Physical parameters correspond to Figure 3 and (1) Twall = −11.5 °C, s0 = 15 mm (solid line),
(2) Twall = −14.79 °C, s0 = 19 mm (dashed line), (3) Twall = −19.9 °C, s0 = 25 mm (dash-dotted line).
The horizontal dotted line α = 0 divides the stability (α < 0) and instability (α > 0) domains. The
phase shift is chosen so that cos ψ = sin ψ.

Figure 5. Dimensionless wavenumber of ice-surface waves corresponding to onset of morphological
perturbations (wavy pattern formation) as a function of Reynolds number Reδ = u∗δ/νw based on
the boundary-layer thickness δ. Experiments [35] and theory are shown by symbols and solid line,
respectively. Physical parameters correspond to Figure 3.

It should be noted that the present analytical model and perturbation theory do not
work for a larger scale and turbulent flow. For example, taking into account the turbulent
flow, when fluid particles can undergo large pulsations, the smallness of temperature
perturbations near the interfacial boundary is not fulfilled. In addition, the ice surface must
be smooth enough to avoid creating complex circulation currents that result in fluid mixing.
Another important requirement is that the deviations of the phase interface position η(x, t)
from the flat boundary s0(t) are small enough, i.e., |η(x, t)| ≪ s0. This condition can be
violated for large spatial scales as well as for small crystallization times. On the other
hand, the macroscopic scale of the problem in the direction of fluid flow (direction x) must
be much larger than the wavelength λ in order to disregard solid boundaries at fixed
x. In general, with these limitations taken into account, the theory under consideration
describes the morphological stability of wavy ice patterns with allowance for the convective–
conductive heat transfer mechanism at the ice–water boundary.

An important practical application of the morphological stability theory of the water–
ice interfacial boundary is the question of heat transfer at the ice surface. In the case of
a wavy ice surface, the heat transfer through it is considerably higher than in the case of
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a flat surface [44–47]. In this case, fluid flows enhance heat transfer across the interfacial
boundary, contributing to an increase in the resulting heat flux by increasing its convective
component. Since the salinity of water lowers its freezing temperature and highly influ-
ences the resulting heat budget [48–50], an important direction for future investigations is
the morphological stability analysis of a wavy ice surface in salty water taking convective–
conductive heat and mass transfer into account. Another important task extending the
present theory consists in accounting for the two-phase region on the boundary of pure
ice [51–56]. Such a region essentially changes heat and mass transfer in the crystallizing
system and influences the process of formation and evolution of morphological perturba-
tions due to the presence of permeability and the possibility of liquid penetration through
the water–ice interface.

4. Conclusions

In summary, we study the problem of morphological instability of the liquid–solid
interface leading to the formation of a wavy ice surface. Since the fluid flow near a
rough surface of solid phase (ice) is not laminar, convective–conductive heat transfer
is taken into account. Bearing this in mind, we formulate the mathematical model for
the growth of ice layer inside the liquid from a cooled wall. Our model accounts for
small deviations of the water–ice interfacial boundary from a flat surface, which may
be able to grow or decay with time. To determine the conditions of stable/unstable ice
growth, we construct a morphological stability theory of the water–ice surface in the case
of small perturbations. Within the framework of this theory, we have determined the
stationary solution corresponding to the unperturbed equations with a flat interfacial
boundary, as well as the solutions describing its perturbations. These solutions allowed us
to find the migration velocity of perturbations and a dispersion relation determining the
amplification rate as a function of perturbation wavenumber. Numerical analysis of the
dispersion relation showed that there are stability and instability regions depending on the
wavenumber of morphological perturbations and the temperature of a cold wall. As this
takes place, the maximum value of the amplification rate is not essentially dependent of
the wavenumber and is highly dependent of the temperature of a cold wall. This agrees
with experimental data for ice-surface waves corresponding to the instability onset. Let us
especially emphasize in conclusion that a nonlinear morphological stability analysis of the
problem under consideration should be carried out to define the perturbation amplitudes
of temperature and ice thickness. Such a theory representing a challenging task for future
studies requires expanding the sought functions in Taylor series up to the cubic terms in
the supercriticality parameter.
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