Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141702
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorStepanova, A. I.en
dc.contributor.authorKhalyasmaa, A. I.en
dc.contributor.authorMatrenin, P. V.en
dc.contributor.authorEroshenko, S. A.en
dc.date.accessioned2025-02-25T11:02:19Z-
dc.date.available2025-02-25T11:02:19Z-
dc.date.issued2024-
dc.identifier.citationStepanova, A. I., Khalyasmaa, A. I., Matrenin, P. V., & Eroshenko, S. A. (2024). Application of SHAP and Multi-Agent Approach for Short-Term Forecast of Power Consumption of Gas Industry Enterprises. Algorithms, 17(10), [447]. https://doi.org/10.3390/a17100447apa_pure
dc.identifier.issn1999-4893-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85207639741&doi=10.3390%2fa17100447&partnerID=40&md5=7e2daef0702005f8cf43cef995861af51
dc.identifier.otherhttps://www.mdpi.com/1999-4893/17/10/447/pdf?version=1728387350pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141702-
dc.description.abstractCurrently, machine learning methods are widely applied in the power industry to solve various tasks, including short-term power consumption forecasting. However, the lack of interpretability of machine learning methods can lead to their incorrect use, potentially resulting in electrical system instability or equipment failures. This article addresses the task of short-term power consumption forecasting, one of the tasks of enhancing the energy efficiency of gas industry enterprises. In order to reduce the risks of making incorrect decisions based on the results of short-term power consumption forecasts made by machine learning methods, the SHapley Additive exPlanations method was proposed. Additionally, the application of a multi-agent approach for the decomposition of production processes using self-generation agents, energy storage agents, and consumption agents was demonstrated. It can enable the safe operation of critical infrastructure, for instance, adjusting the operation modes of self-generation units and energy-storage systems, optimizing the power consumption schedule, and reducing electricity and power costs. A comparative analysis of various algorithms for constructing decision tree ensembles was conducted to forecast power consumption by gas industry enterprises with different numbers of categorical features. The experiments demonstrated that using the developed method and production process factors reduced the MAE from 105.00 kWh (MAPE of 16.81%), obtained through expert forecasting, to 15.52 kWh (3.44%). Examples were provided of how the use of SHapley Additive exPlanation can increase the safety of the electrical system management of gas industry enterprises by improving experts’ confidence in the results of the information system. © 2024 by the authors.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnauka, (FEUZ-2022-0030); Ministry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipThis research was carried out within the state assignment with the financial support of the Ministry of Science and Higher Education of the Russian Federation (subject No. FEUZ-2022-0030, development of an intelligent multi-agent system for modeling deeply integrated technological systems in the power industry).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceAlgorithms2
dc.sourceAlgorithmsen
dc.subjectCOMPRESSOR STATION OF THE MAIN GAS PIPELINEen
dc.subjectGAS INDUSTRYen
dc.subjectMACHINE LEARNINGen
dc.subjectMULTI-AGENT APPROACHen
dc.subjectSHAPLEY ADDITIVE EXPLANATIONen
dc.subjectSHORT-TERM POWER CONSUMPTION FORECASTen
dc.subjectCOST REDUCTIONen
dc.subjectELECTRIC UTILITIESen
dc.subjectFERROELECTRIC RAMen
dc.subjectGAS COMPRESSORSen
dc.subjectGAS PIPELINESen
dc.subjectMINERAL OILSen
dc.subjectOIL SHALEen
dc.subjectPIPELINE COMPRESSOR STATIONSen
dc.subjectCOMPRESSOR STATION OF THE MAIN GAS PIPELINEen
dc.subjectCOMPRESSOR STATIONSen
dc.subjectMACHINE LEARNING METHODSen
dc.subjectMACHINE-LEARNINGen
dc.subjectMAIN GASen
dc.subjectMULTI-AGENT APPROACHen
dc.subjectPOWERen
dc.subjectSHAPLEYen
dc.subjectSHAPLEY ADDITIVE EXPLANATIONen
dc.subjectSHORT-TERM POWER CONSUMPTION FORECASTen
dc.subjectGAS INDUSTRYen
dc.titleApplication of SHAP and Multi-Agent Approach for Short-Term Forecast of Power Consumption of Gas Industry Enterprisesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/a17100447-
dc.identifier.scopus85207639741-
local.contributor.employeeStepanova A.I., Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620062, Russian Federationen
local.contributor.employeeKhalyasmaa A.I., Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620062, Russian Federationen
local.contributor.employeeMatrenin P.V., Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620062, Russian Federationen
local.contributor.employeeEroshenko S.A., Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620062, Russian Federationen
local.issue10-
local.volume17-
dc.identifier.wos001341874200001-
local.contributor.departmentUral Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620062, Russian Federationen
local.identifier.pure65301672-
local.description.order447
local.identifier.eid2-s2.0-85207639741-
local.fund.rsfMinistry of Education and Science of the Russian Federation, Minobrnauka, (FEUZ-2022-0030); Ministry of Education and Science of the Russian Federation, Minobrnauka
local.fund.rsfThis research was carried out within the state assignment with the financial support of the Ministry of Science and Higher Education of the Russian Federation (subject No. FEUZ-2022-0030, development of an intelligent multi-agent system for modeling deeply integrated technological systems in the power industry).
local.identifier.wosWOS:001341874200001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85207639741.pdf5,21 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.