Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/141699
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Feda, A. K. | en |
dc.contributor.author | Adegboye, O. R. | en |
dc.contributor.author | Agyekum, E. B. | en |
dc.contributor.author | Shuaibu, Hassan, A. | en |
dc.contributor.author | Kamel, S. | en |
dc.date.accessioned | 2025-02-25T10:52:12Z | - |
dc.date.available | 2025-02-25T10:52:12Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Feda, A. K., Adegboye, O. R., Agyekum, E. B., Shuaibu Hassan, A., & Kamel, S. (2024). Carbon Emission Prediction Through the Harmonization of Extreme Learning Machine and INFO Algorithm. IEEE Access, 12, 60310-60328. https://doi.org/10.1109/ACCESS.2024.3390408 | apa_pure |
dc.identifier.issn | 2169-3536 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access; Gold Open Access | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85190749403&doi=10.1109%2fACCESS.2024.3390408&partnerID=40&md5=43d390391c2e13a6718680878a2b4c24 | 1 |
dc.identifier.other | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10504253.pdf | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/141699 | - |
dc.description.abstract | This research introduces a novel optimization algorithm, weIghted meaN oF vectOrs (INFO), integrated with the Extreme Learning Machine (ELM) to enhance the predictive capabilities of the model for carbon dioxide (CO2) emissions. INFO optimizes ELM's weight and bias. In six classic test problems and CEC 2019 functions, INFO demonstrated notable strengths in achieving optimal solutions for various functions. The proposed hybrid model, ELM-INFO, exhibits superior performance in forecasting CO2 emissions, as substantiated by rigorous evaluation metrics. Notably, it achieves a superior R2 value of 0.9742, alongside minimal values in Root Mean Squared Error (RMSE) at 0.01937, Mean Squared Error (MSE) at 0.00037, Mean Absolute Error (MAE) at 0.0136, and Mean Absolute Percentage Error (MAPE) at 0.0060. These outcomes underscore the robustness of ELM-INFO in accurately predicting CO2 emissions within the testing dataset. Additionally, economic growth is the most significant element, as indicated by ELM-INFO's permutation significance analysis, which causes the model's MSE to increase by 19%. Trade openness and technological innovation come next, each adding 7.6% and 8.1% to the model's MSE increase, respectively. According to ELM-INFO's performance, it's a powerful tool for developing ecologically sound policies that improve environmental resilience and sustainability. © 2013 IEEE. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by-nc-nd | other |
dc.source | IEEE Access | 2 |
dc.source | IEEE Access | en |
dc.subject | ARTIFICIAL NEURAL NETWORK | en |
dc.subject | CARBON EMISSION PREDICTION | en |
dc.subject | CONVERGENCE ACCELERATION | en |
dc.subject | EXTREME LEARNING MACHINE | en |
dc.subject | METAHEURISTIC ALGORITHMS | en |
dc.subject | ACCELERATION | en |
dc.subject | CARBON DIOXIDE | en |
dc.subject | ECONOMICS | en |
dc.subject | ERRORS | en |
dc.subject | FORECASTING | en |
dc.subject | KNOWLEDGE ACQUISITION | en |
dc.subject | LEARNING ALGORITHMS | en |
dc.subject | LEARNING SYSTEMS | en |
dc.subject | MEAN SQUARE ERROR | en |
dc.subject | OPTIMIZATION | en |
dc.subject | STATISTICAL TESTS | en |
dc.subject | SUSTAINABLE DEVELOPMENT | en |
dc.subject | CARBON EMISSION PREDICTION | en |
dc.subject | CARBON EMISSIONS | en |
dc.subject | CONVERGENCE ACCELERATION | en |
dc.subject | EMISSIONS PREDICTION | en |
dc.subject | EXTREME LEARNING MACHINE | en |
dc.subject | LEARNING MACHINES | en |
dc.subject | MACHINE LEARNING ALGORITHMS | en |
dc.subject | MEAN SQUARED ERROR | en |
dc.subject | META-HEURISTICS ALGORITHMS | en |
dc.subject | PREDICTIVE MODELS | en |
dc.subject | NEURAL NETWORKS | en |
dc.title | Carbon Emission Prediction Through the Harmonization of Extreme Learning Machine and INFO Algorithm | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1109/ACCESS.2024.3390408 | - |
dc.identifier.scopus | 85190749403 | - |
local.contributor.employee | Feda A.K., European University of Lefke, Advanced Research Centre, Lefke, 99010, Turkey | en |
local.contributor.employee | Adegboye O.R., University of Mediterranean Karpasia, Management Information Systems Department, Nicosia, 99138, Turkey | en |
local.contributor.employee | Agyekum E.B., Ural Federal University named after the first President of Russia Boris Yeltsin, Department of Nuclear and Renewable Energy, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Shuaibu Hassan A., Soroti University, School of Engineering Technology, Electrical Engineering Department, Arapai, Uganda | en |
local.contributor.employee | Kamel S., Aswan University, Faculty of Engineering, Electrical Engineering Department, Aswan, 81542, Egypt | en |
local.description.firstpage | 60310 | |
local.description.lastpage | 60328 | |
local.volume | 12 | - |
dc.identifier.wos | 001214261900001 | - |
local.contributor.department | European University of Lefke, Advanced Research Centre, Lefke, 99010, Turkey | en |
local.contributor.department | University of Mediterranean Karpasia, Management Information Systems Department, Nicosia, 99138, Turkey | en |
local.contributor.department | Ural Federal University named after the first President of Russia Boris Yeltsin, Department of Nuclear and Renewable Energy, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.department | Soroti University, School of Engineering Technology, Electrical Engineering Department, Arapai, Uganda | en |
local.contributor.department | Aswan University, Faculty of Engineering, Electrical Engineering Department, Aswan, 81542, Egypt | en |
local.identifier.pure | 56696452 | - |
local.identifier.eid | 2-s2.0-85190749403 | - |
local.identifier.wos | WOS:001214261900001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85190749403.pdf | 5,24 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.