Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141699
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorFeda, A. K.en
dc.contributor.authorAdegboye, O. R.en
dc.contributor.authorAgyekum, E. B.en
dc.contributor.authorShuaibu, Hassan, A.en
dc.contributor.authorKamel, S.en
dc.date.accessioned2025-02-25T10:52:12Z-
dc.date.available2025-02-25T10:52:12Z-
dc.date.issued2024-
dc.identifier.citationFeda, A. K., Adegboye, O. R., Agyekum, E. B., Shuaibu Hassan, A., & Kamel, S. (2024). Carbon Emission Prediction Through the Harmonization of Extreme Learning Machine and INFO Algorithm. IEEE Access, 12, 60310-60328. https://doi.org/10.1109/ACCESS.2024.3390408apa_pure
dc.identifier.issn2169-3536-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85190749403&doi=10.1109%2fACCESS.2024.3390408&partnerID=40&md5=43d390391c2e13a6718680878a2b4c241
dc.identifier.otherhttps://ieeexplore.ieee.org/ielx7/6287639/6514899/10504253.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141699-
dc.description.abstractThis research introduces a novel optimization algorithm, weIghted meaN oF vectOrs (INFO), integrated with the Extreme Learning Machine (ELM) to enhance the predictive capabilities of the model for carbon dioxide (CO2) emissions. INFO optimizes ELM's weight and bias. In six classic test problems and CEC 2019 functions, INFO demonstrated notable strengths in achieving optimal solutions for various functions. The proposed hybrid model, ELM-INFO, exhibits superior performance in forecasting CO2 emissions, as substantiated by rigorous evaluation metrics. Notably, it achieves a superior R2 value of 0.9742, alongside minimal values in Root Mean Squared Error (RMSE) at 0.01937, Mean Squared Error (MSE) at 0.00037, Mean Absolute Error (MAE) at 0.0136, and Mean Absolute Percentage Error (MAPE) at 0.0060. These outcomes underscore the robustness of ELM-INFO in accurately predicting CO2 emissions within the testing dataset. Additionally, economic growth is the most significant element, as indicated by ELM-INFO's permutation significance analysis, which causes the model's MSE to increase by 19%. Trade openness and technological innovation come next, each adding 7.6% and 8.1% to the model's MSE increase, respectively. According to ELM-INFO's performance, it's a powerful tool for developing ecologically sound policies that improve environmental resilience and sustainability. © 2013 IEEE.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-nc-ndother
dc.sourceIEEE Access2
dc.sourceIEEE Accessen
dc.subjectARTIFICIAL NEURAL NETWORKen
dc.subjectCARBON EMISSION PREDICTIONen
dc.subjectCONVERGENCE ACCELERATIONen
dc.subjectEXTREME LEARNING MACHINEen
dc.subjectMETAHEURISTIC ALGORITHMSen
dc.subjectACCELERATIONen
dc.subjectCARBON DIOXIDEen
dc.subjectECONOMICSen
dc.subjectERRORSen
dc.subjectFORECASTINGen
dc.subjectKNOWLEDGE ACQUISITIONen
dc.subjectLEARNING ALGORITHMSen
dc.subjectLEARNING SYSTEMSen
dc.subjectMEAN SQUARE ERRORen
dc.subjectOPTIMIZATIONen
dc.subjectSTATISTICAL TESTSen
dc.subjectSUSTAINABLE DEVELOPMENTen
dc.subjectCARBON EMISSION PREDICTIONen
dc.subjectCARBON EMISSIONSen
dc.subjectCONVERGENCE ACCELERATIONen
dc.subjectEMISSIONS PREDICTIONen
dc.subjectEXTREME LEARNING MACHINEen
dc.subjectLEARNING MACHINESen
dc.subjectMACHINE LEARNING ALGORITHMSen
dc.subjectMEAN SQUARED ERRORen
dc.subjectMETA-HEURISTICS ALGORITHMSen
dc.subjectPREDICTIVE MODELSen
dc.subjectNEURAL NETWORKSen
dc.titleCarbon Emission Prediction Through the Harmonization of Extreme Learning Machine and INFO Algorithmen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1109/ACCESS.2024.3390408-
dc.identifier.scopus85190749403-
local.contributor.employeeFeda A.K., European University of Lefke, Advanced Research Centre, Lefke, 99010, Turkeyen
local.contributor.employeeAdegboye O.R., University of Mediterranean Karpasia, Management Information Systems Department, Nicosia, 99138, Turkeyen
local.contributor.employeeAgyekum E.B., Ural Federal University named after the first President of Russia Boris Yeltsin, Department of Nuclear and Renewable Energy, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeShuaibu Hassan A., Soroti University, School of Engineering Technology, Electrical Engineering Department, Arapai, Ugandaen
local.contributor.employeeKamel S., Aswan University, Faculty of Engineering, Electrical Engineering Department, Aswan, 81542, Egypten
local.description.firstpage60310
local.description.lastpage60328
local.volume12-
dc.identifier.wos001214261900001-
local.contributor.departmentEuropean University of Lefke, Advanced Research Centre, Lefke, 99010, Turkeyen
local.contributor.departmentUniversity of Mediterranean Karpasia, Management Information Systems Department, Nicosia, 99138, Turkeyen
local.contributor.departmentUral Federal University named after the first President of Russia Boris Yeltsin, Department of Nuclear and Renewable Energy, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentSoroti University, School of Engineering Technology, Electrical Engineering Department, Arapai, Ugandaen
local.contributor.departmentAswan University, Faculty of Engineering, Electrical Engineering Department, Aswan, 81542, Egypten
local.identifier.pure56696452-
local.identifier.eid2-s2.0-85190749403-
local.identifier.wosWOS:001214261900001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85190749403.pdf5,24 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.