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ABSTRACT This research introduces a novel optimization algorithm, weIghted meaN oF vectOrs (INFO),
integrated with the Extreme Learning Machine (ELM) to enhance the predictive capabilities of the model
for carbon dioxide (CO2) emissions. INFO optimizes ELM's weight and bias. In six classic test problems
and CEC 2019 functions INFO demonstrated notable strengths in achieving optimal solutions for various
functions. The proposed hybrid model, ELM-INFO, exhibits superior performance in forecasting CO2
emissions, as substantiated by rigorous evaluation metrics. Notably, it achieves a superior R2 value of
0.9742, alongside minimal values in Root Mean Squared Error (RMSE) at 0.01937, Mean Squared Error
(MSE) at 0.00037, Mean Absolute Error (MAE) at 0.0136, and Mean Absolute Percentage Error (MAPE) at
0.0060. These outcomes underscore the robustness of ELM-INFO in accurately predicting CO2 emissions
within the testing dataset. Additionally, economic growth is the most significant element, as indicated by
ELM-INFO's permutation significance analysis, which causes the model's MSE to increase by 19%. Trade
openness and technological innovation come next, each adding 7.6% and 8.1% to the model's MSE increase,
respectively. According to ELM-INFO's performance, it’s a powerful tool for developing ecologically
sound policies that improve environmental resilience and sustainability.

INDEX TERMS Artificial neural network, Carbon Emission Prediction, Convergence acceleration,
Extreme Learning Machine, Metaheuristic algorithms,

I. INTRODUCTION
The environment is vital to our continued existence on Earth,
as we all know, and changes in it can either benefit or harm
humans. One such alteration to the physical environment that
has serious ramifications for human survival is climate
change. Global ecosystems are universally threatened by
climate change, which also impacts various facets of human
life. Climate change endangers food security [1], disrupts
environmental equilibrium [2], increases the frequency of
natural disasters [3], gives rise to new diseases, and
exacerbates water scarcity [4]. Moreover, it places stress on
public health systems, introduces socioeconomic challenges,
triggers unemployment, and induces migration. It is
noteworthy that there is a unanimous acknowledgment

among scholars and experts regarding the critical
significance of the problem of climate change. A strong
body of international scientific evidence supports the reality
of this phenomenon. If recent trends in global warming
continue, temperatures will increase, ocean levels will rise,
and severe weather events like storms, heat waves, droughts,
floods, and cyclones will become more common. These
events could result in the persistence of devastating weather-
related phenomena already observed, such as hurricanes (like
Katrina and Rita in the USA), tsunamis, typhoons, flooding,
particularly in the Asian Continent, wildfires, particularly in
Australia and the USA[5]. Climate Change (CC) refers to
human-induced changes in the average weather,
encompassing variables like temperature, humidity,
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precipitation, cloud cover, and wind patterns, as well as
variations in the occurrence or intensity of these
circumstances. Research indicates that the main cause of
climate change is the emission of greenhouse gases,
unequivocally triggering global warming that have led to a
significant rise in the global surface temperature, reaching
1.1°C above the baseline of 1850-1900 within the timeframe
of 2011-2020 [6]. Mitigating climate change involves
transforming global energy production systems to curtail
Green House Gas (GHG) production, necessitating a
multidimensional approach. First an accurate modeling and
prediction at individual, community, and country levels.
Second, the incorporation of data science and analysis to
enhance the understanding of emission trends and facilitate
reduction strategies
Recent technological progress, specifically in artificial
intelligence (AI) and machine learning (ML), provide
valuable tools for modeling complex environmental
phenomena associated with climate change [7]. The field of
ML, succinctly described as empowering computers to
make accurate predictions based on past experiences, has
witnessed remarkable advancements, particularly fueled by
the rapid enhancement of computer storage capacity and
processing power. In conjunction with various other
disciplines, machine learning methodologies have found
extensive applications for modeling and prediction in
diverse areas, including the prediction of food safety [8],
the diagnosis of COVID-19 through X-ray and CT Images
[9], Predicting Match Results in Team Sport [10]; damage
detection [11] predicting patient response to therapy [12],
predicting solar energy use [13], breast cancer detection
[14], Weather Prediction [15], stock market trends [16],
visitors’ green behavior [17], prediction of organic solid
waste treatment [18], predicting the consequences of
construction accidents [19], Android malware detection
[20], etc. Likewise, ML techniques have been employed in
the context of climate change. Hamrani et al. investigated
the possibilities of using three types of machine learning
(ML) regression models: shallow learning deep learning
and classical regression to forecast soil GHG releases from
a region used for agriculture [21]. Mardani et al. employed
clustering, dimensionality reduction, and prediction
machine learning algorithms to establish an effective multi-
stage system to estimate carbon dioxide production on the
basis of two crucial variables, namely the energy
consumption and economic growth [22]. Nguyen et al.
suggested a machine learning method to ameliorate the
prediction of business carbon emissions for risk
assessments by investors. As the optimal emission
forecasting method, they presented a two-step architecture
that combines forecasts from various base-learners using a
Meta-Elastic Net learner [23]. Another example is the work
of Bakay and Ağbulut that used deep learning (DL),
support vector machine (SVM), and artificial neural
network (ANN) techniques to forecast GHG releases from

Turkey's electricity generating industry [24]. There are
many other research studies which have focused on the
employment of Artificial neural networks (ANNs) in the
context of climate change. Artificial neural networks
(ANNs) are mathematical and information-processing
models that are motivated by organic brain systems [25].
Their strong forecasting ability, capacity to represent
dynamic and complicated systems, simplicity of use, and
parallel structure are only a few of their numerous benefits,
which have led to their widespread use in many
classification and regression issues. ANNs are formed by a
multitude of processing units referred to as "neurons"
dispersed throughout several layers. One of the most
commonly used neural network topologies is single-hidden-
layer feedforward neural networks (SLFN). SLFN are
general approximators that can approximate every
continuous function, as demonstrated by the literature.
Usually, gradient descent techniques like Backpropagation
(BP) are used to train SLFNs. Despite their widespread use,
gradient descent dependent training methods, like BP, have
significant limitations, including sluggish convergence, a
high likelihood of getting caught in a local minimum, and a
strong dependence on the network's initial weights.
Extreme learning machine (ELM), a novel machine
learning algorithm was introduced as a means of training
single-hidden-layer feed-forward neural networks (SLFNs)
with the aim to address the shortcomings of gradient
descent training techniques [26]. The input weights and
biases, which are ELM learning parameters, are assigned at
random and do not require tuning, whereas the output
weights are derived analytically via a straightforward
generalization reverse procedure. Due to its lack of iteration,
ELM can therefore complete training considerably more
quickly than standard algorithms. Additionally, ELM can
escape several issues related to conventional gradient base
methods, including local minimums and learning speed.
Despite its advantages, ELM is confronted with certain
limitations [27]. The initial configuration of weights and
biases plays a pivotal role in its overall effectiveness.
Various strategies have been suggested in scholarly works
to address these challenges and enhance the efficacy of
ELM networks. A category of strategies that have garnered
significant attention involves the utilization of
metaheuristic-based methods. Metaheuristic algorithms
represent efficient techniques tailored to yield satisfactory
or nearly optimal solutions for complex optimization
problems. These algorithms systematically guide the search
process to explore the solution space effectively, aiming to
achieve greater effectiveness. The majority of these
algorithms draw inspiration from physical or biological
systems. Noteworthy advantages include their problem-
independent nature, stochastic guidance in the search stage
to discover nearly optimum solutions, and applicability to
problems spanning from straightforward searches to
intricate scenarios. Shariaty et al., introduced a novel
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approach to forecast the compressive strength of concrete
with partial cement replacements [28]. By joining extreme
learning machine (ELM) with the grey wolf optimizer
(GWO) algorithm, the proposed ELM-GWO model
outperforms five other well-known machine learning
models. The outcomes indicate that this merged algorithm
achieves superior performance, providing an efficient
alternative for predicting compressive strength, especially
in scenarios involving concrete with partial cement
replacements. Boriratrit et al. integrated the Jellyfish Search
Extreme Learning Machine (JS-ELM) and employed the
hybrid model for energy demand prediction [29]. Data on
actual electric energy demand in Thailand from 2018 to
2020 were gathered and utilized to assess and contrast the
effectiveness of the introduced model against existing
forecasting methods. The comprehensive findings indicate
that the JS-ELM outperforms other forecasting methods,
displaying the lowest root mean square error. Additionally,
the JS-ELM exhibits optimal processing time during the
course of this experiment. Qiu et al. addressed the challenge
of estimating the uniaxial compressive strength (UCS) of
rocks, a crucial parameter in engineering projects for
disaster mitigation, utilizing extreme learning machines
(ELM) optimized by the whale optimization algorithm
(WOA) [30]. Performance evaluation reveals that the
WOA-ELM model outperforms others, demonstrating
smaller relative errors (0.22%, 72.05%, and 11.48%) and
residual errors (0.02 and 2.64 MPa). The derived UCS
values from WOA-ELM exhibit superior accuracy,
indicating its potential for widespread application in
estimating UCS for various rock types. In an attempt to
predict super capacitor capacity Li et al., proposed an
advanced predicting model, merging extreme learning
machine (ELM) with the metaheuristic Kalman filter (HKF)
algorithm [31]. This HKF-ELM model outperforms
common data-driven models for supercapacitor life
forecasting, showing significant improvements over
traditional ELM, Kalman filtering, and other methods.
Notwithstanding the benefits of ELM stated in existing
literature, ELM still suffers from a few limitations. Notably,
the performance of ELM is significantly influenced by the
initialization of its structure, with the model's effectiveness
hinging on the initial weights and biases. The stochastic
nature of hidden bias and random input weight selection
introduces variability that may lead to suboptimal outcomes,
impeding the model's generalization capability. In
addressing these challenges, our research introduces a novel
solution by leveraging the INFO algorithm (Weighted
Mean of Vectors). This choice is motivated by the
algorithm's sophisticated weighted mean methodology,
encompassing three critical processes: updating rule, vector
combining, and local search. This novel approach serves as
an innovative strategy to overcome the shortcomings of
ELM, particularly in the context of CO2 emission
prediction.

The remaining portions of this article are thus structured:
Section 2 presents a brief introduction to ELM and INFO.
Section 3 details the evaluation of INFO algorithm on test
functions. In Section 4, a comprehensive explanation of the
proposed ELM-INFO is provided. Section 5 explains the
optimization and evaluation of ELM-INFO. Section 6
covers the experiments and results, followed by discussions
and the significance of the study. The conclusion and future
work are presented in Section 7.

II. Preliminary

A. INFO
The INFO algorithm functions as a population inspired
optimization technique, primarily relying on the computation
of the weighted mean for a group of vectors within the search
region [31]. These vectors serve as representations of
possible solutions. The algorithm progresses through three
steps, namely updating rule, vector combining, and local
search, to adjust the positions of these vectors. The
initialization process of the INFO algorithm involves
randomly generating a population of vectors according to the
definition provided below.

��,�
� = ��,1

� , ��,2
� , …, ��,�

� (1)

With � = 1,2, …, �� ; �� denoting the population of
vectors, and D the search region's dimension. The weighted
mean factor (�) and scaling factor (�) , which vary
dynamically throughout generations, are also employed in
the initialization phase and are provided in Equation (2) and
Equation (3).

� = 2� × rand –� (2)

� = 2� × rand –� (3)

With � = 2�−4(�/����) and � = ��−�( �
����) . Here, �

signifies the current generation, and ���� denotes the
maximum number of generations. Additionally, � is equal
to 2 and � is equal to 4. The increase of population
diversity is accomplished through the utilization of the
updating rule operator, which employs the weighted mean
of vectors to generate novel ones. Within the INFO
algorithm, the determination of the weighted mean involves
the utilization of a number of differentially selected vectors,
as opposed to directing the vector towards an improved
solution. To enhance population diversity, a MeanRule, as
shown in equation (4), is incorporated:

MeanRule = � × ��1�
g + (1 − �) ×

��2�
g

(4)

��1�
g = � ×

�1 ��1−��2 +�2 �a1−��3 +�3 ��2−��3
�1+�2+�3+�

+ � ×
rand (5)
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��2�
g = � ×

�1 ���−��� +�2 �bs−��� +�3 ���−���
�1+�2+�3+�

+ � ×
rand (6)

�1, �1 and �1 denote wavelet functions [15]. � =
1,2, …, �� ; � is a number generated randomly from the [0,
0.5]; and �1; �2; �3 are distinct integers chosen randomly
from the range 1, �� . Additionally, rand signifies a
normally distributed arbitrary value while � represents a
small constant. On the other hand of ���, ��� and ��� , the
worst, better and best solutions. A convergence acceleration
(CA) component is incorporated in the updating rule
operator as shown in equation (7). Here randn is a randomly
generated number having a normal distribution.

�� = randn × ���−��1
� ��� −� ��1 +�

(7)

The computation of the new vector, as outlined in equation
(8), is achieved by employing the previous equations:

��
� = ��

� + � × MeanRule + �� (8)

The updating rule, formulated depending on �bs,, �bt, ��
� and

�a1
3 , is specified to generate new vectors denoted as �11

� and
�2��

� in the ��ℎ generation. To determine these vectors in
the current generation, a conditional mechanism is
introduced based on a randomly generated number. If this
number is less than 0.5, equations (9) and (10) come into
play.

�1�
� = ��

� + � × MeanRule +

randn × ���−��1
�

� ��� −� ��1
� +1

(9)

�2�
� = ��� + � × MeanRule +

randn ×
��1

� −��
�

� ��1
� −� ��2

� +1

(10)

Equations (11) and (12) present an alternative updating
mechanism when the randomly generated number
exceeds 0.5. In this case, the algorithm employs Equation
(11) to compute �11

� and Equation (12) to compute �2��
�.

This demonstrates the INFO algorithm’s ability to adjust
its methods by picking different strategies randomly. This
adaptability lets INFO handle various problem-solving
situations more effectively.

�1�
� = ��

� + � × MeanRule +

randn × ��2
� −��3

�

� ��2
� −� ��3

� +1

(11)

�2�
� = ��� + � × MeanRule +

randn × ��1
� −��2

�

� ��1
� −� ��2

� +1

(12)

During the vector combining phase, vector �1
� is merged

with the acquired vectors of z1�
� and z1�

� to produce the
new vector �1

�.
The introduction of the parameter � = 0.05 × randn, adds
a stochastic element to the merging process. The conditions
within these equations further contribute to the algorithm's
versatility. If a randomly generated number is less than 0.5,
the algorithm selects between two merging strategies
depending on the value of another random generated as
outlined in equations (13) and (14) , each involving a
weighted combination of the acquired vectors and their
absolute differences. Alternatively, if the random number
exceeds 0.5, the merging process simply involves retaining
the current vector ��

g (equation 15).

if rand < 0.5:
if rand < 0.5.

�1
� = �1�

� + � ⋅ |�|�
� − z2�

�∣ (13)
else

�1
� = �2�

� + � ⋅ |�1�
� − z2�

�∣ (14)
end .

else
�1

� = ��
g (15)

The utilization of the vector combining stage is primarily
aimed at executing exploitation. The INFO algorithm also
incorporates the local search phase to enhance its efficiency,
thereby preventing local optimum solutions. In this
subsequent stage, the local search agent takes into account
both the global optimum �best

g and adheres to the mean-
based rule outlined in equation (16).

�� = �1×�1+�2×�2
�1+�2

(16)
The following can be used to create a new vector close
to �best

g best:
if rand < 0.5

��
� = ��� + randn × MeanRule +

randn × ���
� − ��1

� (17)
else

��
� = ��� + randn × MeanRule +
randn × �1 × ��� − �2 × ��� (18)

Here, ��� denotes a novel solution that further amplifies the
algorithm's unpredictability. It can be written as follows:
��� = � × ���� + (1 − �) × � × ��� + (1 − �) × ��� ;
with ���� = �� + �� + �3 /3. � is a randomly selected
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from (0,1) while �1 and �2 In contrast, v1 and v2, which
have the following definitions and are two arbitrary
numbers, enhancing the influence of the optimal position on
the vector:

�1 = 2 × rand , � > 0.5
1, otherwise

(19)

�2 = rand, � < 0.5
1, otherwise (20)

Here p is a random number from (0, 1).

B. Classical ELM
The Extreme Learning Machine (ELM) has proven to be a
successful alternative to training neural networks with the
backpropagation (BP) algorithm. ELM is distinguished by
its capacity to address the limitations associated with
training Single Layer Feedforward Networks (SLFNs)
using BP, including local minima and time limitations [32].
There are two essential phases in the ELM learning stage:
(1) randomly assigning weights for the relations between
the input layer and hidden layer, along with biases, then by
the generation of the hidden layer output matrix H. (2)
Determining the outcome weights utilizing the least square
algorithm. Remarkably, ELM reduces computational effort
by converting the learning procedure into a linear system's
solution. We seek for the least squares solution �̂ of the
linear system H� = T in order to train Single Layer
Feedforward Networks (SLFN) as effectively as possible.
Assuming that N unique samples (�� , �� ), K neurons in the
hidden layer, and an activation function g(x) are to be used
in the training of SLFNs. �� = ��1, ��2, …, ���

� is the n-
dimensional input vector of the ith sample. The resultant
vector is denoted by �� = ��1, �2, …, ��1

� . This type of
set will contain the following components: the hidden layer
bias (��×1); the input weights; and output weights (�1×��.).
The form of the ELM's output function is provided by
Equation (21).

��(�) =
�=1

�
 � ��ℎ�(�) = ℎ(�)�

(21)

Here �� denotes the weight vector connecting the output
neurons (≥1) with the hidden neuron � . The consolidated
weight vector is denoted as � = �1, �2, …, �� , connecting
the hidden layer to the output layer with a minimum of one
neuron, and the hidden layer's output is represented by
ℎ � = ℎ1 � , ℎ2 � , …, ℎ� � . ℎ(�) in a specific
application can be written as:

ℎ�(�) = � ��, ��, � , ��, � ∈ ��, �� ∈ � (22)

Here G is a piecewise continuous, nonlinear function. There
are numerous activation functions that can be employed in
the hidden layer's hidden neurons. The sine function,

hardlimit function, and sigmoid function are some of the
most often utilized ones. A single instance of the training
samples is represented by � , and ��, �� are the
configuration variables of the �� hidden neuron.
Equation 21 can also be expressed as �� = � , with ��×�
representing the hidden layer’s output matrix.

� =
ℎ(�1)

⋮
ℎ(��)

=
ℎ(�1) ⋯ ℎ�(�1)

⋮
ℎ(��) ⋯ ℎ�(��)

=

� �1, �1, �1 ⋯ � ��, ��, �1
⋮ ⋮

� �1, �1, �� ⋯ � ��, ��, ��

�1 + ��
⋮

�� + �� ���

(23)

Where the weight vector linking the input neurons to the ith
hidden neuron is represented by
�� = ��1, �12, …, �it

� .A sample at ith position in the
training set is represented by �� = ��1, …, ��� , T stands for
the desired result, β for the output weight matrix, and �� for
the bias value of the ith hidden neuron. In order to improve
the feedforward neural network's generalization efficiency,
ELM seeks to obtain the lowest output weight norm in
addition to the lowest training error.
Minimize:

∥ �� − �∥2, ∥ � ∥ (24)

The ELM-prepared SLFN in Figure 1 has arbitrarily
initialized weights and biases connecting the input neurons
and hidden neurons. The weights between the hidden
neurons and the output layer are calculated through analysis
using the system's least squares solution, �� = �†�, with H†
standing for the MP generalized inverse of the matrix
obtained in equation (23).

FIGURE 1. Extreme Learning Machine.

III. Performance Evaluation of Proposed INFO Algorithm
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A. Classic Functions
A detailed comparison with well-known algorithms, such as
the Grey Wolf Optimizer [33], Salp Swarm Algorithm [34],
and Sine Cosine Algorithm [35], has been done in order to
properly understand the efficacy of INFO. This evaluation
confirms that the INFO algorithm is competent for CO2
emission prediction. Four metrics (average, standard
deviation, Friedman rank, and Wilcoxon test) have been
applied in order to systematically assess the output
generated by each method. To put it another way, better
performance is shown by a lower mean, and more stability
is shown by a smaller standard deviation. A good measure
for analysing how the newly suggested algorithm performs
overall is the Friedman Rank, where a smaller Friedman
Value indicates better algorithm performance overall.
Furthermore, the approach performs noticeably better than

the comparison algorithm if the Wilcoxon P-value is less
than 0.05.
To uphold experiment fairness, uniform parameters are
maintained across all comparison algorithms. The number
of populations is fixed at 30, and the maximum iteration is
limited to 200. Specific parameters for each algorithm can
be found in Table I. Broadly, the search capabilities of
algorithms can be categorized into exploration ability,
exploitation ability, and the skill to balance these two
capacities is essential. Exploration ability signifies an
algorithm's capability to focus on searching around a
specific region for an optimal solution. Exploitation ability,
on the other hand, characterizes an algorithm's proficiency
in traversing the entire problem space to discover regions
with optimal solutions.

TABLE I
ALGORITHM PARAMETERS

Optimizer Settings

GWO �0 = 2

INFO � = 2, � = 4

SSA c1 =[2/�, 2]

SCA � = 2

Through a comprehensive comparison and analysis of the
evaluation outcomes for INFO and other algorithms on the

classical optimization test functions [36] set from Table II,
we can gain insights into the outstanding performance of
the INFO algorithm. In Table II, F1-F3 correspond to
unimodal functions, serving as tests for an algorithm's
exploitation ability since they possess a single optimal
solution.

TABLE II
OPTIMIZATION TEST FUNCTIONS

Function Range Dim Fmin

�1(�) = ∑�=1
�  ��

2 [-100,100] 30 0

�2(�) = ∑�min
�   �� + ∏�=1

�   �� [-10,10] 30 0

�3(�) = ∑�=1
�   ∑�−1

�  ��
2 [-100,100] 30 0

�4(�) = ∑�=1
�   − ��sin  �� [-500,500] 30 -418.9892xdim

�5(�) =− 20exp  −0.2
1
�

∑�=1
�  ��

2 − exp  (1/�)∑�=1
�  cos  2���

+ 20 + �

[-32,32] 30 0

�6(�) = �/� ∑�=1
�−1   �� − 1 2 1 + 10sin2  ���+1 + �� − 1 2

+ ∑�=1
�  � ��, 10,100,4 + �/�10sin  ��1

�� = 1 + �� + (1/4)� ��, �, �, � =
� �� − � � �� > �
0 −� < �� < �
� − �� − � � �� <− �

[-50,50] 30 0

As illustrated in Figure 2, these functions exhibit less
complex landscapes, with the darkest shade of purple
indicating the optimal solution. On the other hand, F4-F6
represents multi-modal functions, assessing the exploration

ability of algorithms. These functions are characterized by
multiple local optimal solutions and a single global
optimum solution; as depicted in Figure 2, they have a more
complex landscape.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390408

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8 VOLUME XX, 2017

FIGURE 2. Landscape Plot of Optimization Test Functions

The test function outcomes for INFO, along with other
comparative algorithms, are presented in Table III for
unimodal functions with 30 dimensions. The results in
Table III show that INFO surpasses the performance of
SCA, SSA, and GWO on F1-F3. Specifically, INFO
consistently identifies solutions closest to the theoretical
value of 0 for F1-F3, outperforming all other algorithms in
terms of average results and standard deviation. GWO
performed second best to INFO, followed by SSA, while
the worst-performing optimizer is SSA. Taking into
account the outcomes of F1-F3 functions, these
experimental findings conclusively demonstrate that INFO
possesses a stronger exploitation ability. The test results for
INFO and other comparison algorithms for multi-modal
functions are also listed in Table III. Table III makes it
clear that out of all the tested multi-modal functions, INFO
achieves the most competitive performance compared to
SSA and SCA. Both the average and the standard deviation
of results generated by INFO are significantly better than
those of other comparison algorithms. The testing findings
clearly demonstrate INFO's superior exploration capability
over other algorithms in these functions, F4–F6.

TABLE III
OPTIMIZATION TEST FUNCTIONS RESULTS OF GWO, INFO, SCA AND SSA

GWO INFO SCA SSA

F1 AVG 3.4600E-10 3.4600E-39 1.0202E+3 2.6783

STD 3.1200E-10 5.0800E-40 9.6153E+2 1.7393

F2 AVG 8.8400E-7 7.0000E-21 2.5454 4.0166

STD 4.9500E-7 4.5900E-21 2.3207 1.7268

F3 AVG 7.7681 2.6900E-30 2.3497E+4 2.4879E+3

STD 7.6407 1.6500E-30 6.8372E+3 9.5660E+2

F4 AVG -1.1980E+3 -1.5883E+3 -9.1186E+2 -1.4241E+3

STD 1.0009E+2 9.5471E+1 8.8935E+1 1.1048E+2

F5 AVG 3.3900E-6 6.2200E-16 1.6311E+1 3.7573

STD 1.5800E-6 5.6500E-16 6.2346 1.0234

F6 AVG 8.5442E-2 1.5594E-2 2.9754E+7 8.1217

STD 8.0246E-2 7.5300E-3 2.7454E+7 3.1321
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Convergence graphs of INFO, GWO, SCA, and SSA for
the test functions are shown in Figure 3. Of all the methods,
INFO has the fastest convergence for the unimodal
functions (F1–F3). On the other hand, INFO exhibits the
best results considering the convergence speed and
accuracy for the multi-modal functions (F4-F6). This
discovery bolsters the accepted conclusion that, in
comparison to the other algorithms, INFO has greater
convergence performance [37]. Additionally, the plots'
convergence trajectory indicates a faster convergence to the
ideal outcome, which is crucial for improving the ELM's
weight and bias. This faster convergence improves the
optimization algorithm's effectiveness while also improving
the ELM model's overall performance by allowing it to

quickly adjust to and capture information from the training
set. Faster optimisation reduces the amount of time and
computational work needed for training, which is especially
useful when working with large-scale datasets or in
situations where computational resources are scarce.
It is inadequate to evaluate optimisation algorithms only on
the basis of mean and standard deviation values [38], [39].
Two well-known non-parametric statistical tests are used in
this study to evaluate the improvements provided by INFO
in more detail. First and foremost, one uses the Wilcoxon
test. The null hypothesis is rejected if the P-value, or
Wilcoxon probability value, is equal to or higher than 0.05.
This suggests that the compared algorithms do not vary
statistically significantly [40].

FIGURE 3. Optimization Test Functions Convergence of GWO, INFO, SCA and SSA

In contrast, the null hypothesis is accepted if the P-value is
smaller than 0.05, indicating a significant difference
between the procedures that were compared. Each
algorithm's overall performance over a variety of
benchmark functions is measured by the Friedman Value
[38], [39]. With a Friedman Value of 1.0416, INFO secured
the top spot among the algorithms, as can be observed in
Table IV. The superiority of INFO is further shown by the
related Friedman Rank of 1. Furthermore, evaluating the
statistical significance of the variations between INFO and
each of the other methods depends heavily on the Wilcoxon
P-Values. With a P-value of 0.035 for GWO, a statistically
significant difference is shown. Similarly, INFO shows
notable differences for SCA and SSA, with P-Values of
0.0135 and 0.0005, respectively, confirming its superiority

over the other optimisation methods in handling
challenging optimisation situations.

TABLE IV
WILCOXON AND FRIEDMAN NON-PARAMETRIC TESTS

GWO INFO SCA SSA

Friedman Value 2.1250 1.0416 3.8916 2.9416

Friedman Rank 2 1 4 3

Wilcoxon P-Value 3.5035E-2 - 1.3489E-2 4.9278E-4

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390408

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8 VOLUME XX, 2017

FIGURE 4. Flow Chart of ELM-INFO Prediction Model

B. CEC 2019 Functions
The Ten CEC 2019 benchmark functions [41] will allow for
a more rigorous comparison of INFO method against
existing approaches. The section maintains the same
parameters used in the classic functions. The average and
standard deviation of 30 runs is indicated in table V. The
comparison of the INFO algorithm against other
optimization algorithms (GWO, SCA, and SSA) across
CEC 2019 optimization functions is expressed in Table V.
Notably, INFO demonstrates superior performance on
Function C1 by achieving the global optimal solution,
surpassing all other algorithms with an average value of 1,
indicating its effectiveness in solving a complex
optimization problem. Also, INFO performs competitively
on several other functions, such as C2, C3, C5, C6, C7, C8,
and C9. In some cases, such as Function C4, INFO
outperforms certain algorithms but falls slightly behind
GWO. However, INFO generally exhibits lower standard
deviation values compared to its counterparts, suggesting
greater stability in its performance. These findings
underscore the INFO algorithm's ability to tackle
challenging optimization tasks.

TABLE V: RESULTS OF OPTIMIZERS ON CEC 2019 FUNCTIONS

GWO SCA SSA INFO
C1 AVG 4.0334E+5 1.1579E+7 2.1551E+6 1

STD 3.5854E+5 1.0185E+7 1.7763E+6 0
C2 AVG 1.0324E+3 6.7669E+3 1.6047E+3 4.5548

STD 4.0951E+2 2.7778E+3 9.8096E+2 2.8660E-1
C3 AVG 4.32 1.0046E+1 4.7244 3.3635

STD 2.3453 2.6227 2.1159 1.1842
C4 AVG 2.3061E+1 5.6099E+1 3.1598E+1 2.7362E+1

STD 1.1510E+1 1.2077E+1 1.3877E+1 1
C5 AVG 2.7286 1.4560E+1 1.1864 1.1522

STD 2.4838 6.0108 1.7579E-1 1.0435E-1
C6 AVG 3.2864 8.8210 4.5492 3.5979

STD 1.1432 1.3580 1.9419 1.2462
C7 AVG 1.1160E+3 1.7625E+3 1.0538E+3 1.0454E+3

STD 5.1030E+2 3.5302E+2 3.5216E+2 1.6061E+2
C8 AVG 4.2256 4.7429 4.3458 4.0981

STD 4.4283E-1 3.5147E-1 4.2650E-1 2.6014E-1
C9 AVG 1.2545 1.7949 1.3694 1.2122

STD 9.5083E-2 2.5290E-1 1.6255E-1 7.9582E-2
C10 AVG 2.1570E+1 2.1569E+1 2.1045E+1 2.1336E+1

STD 1.3436E-1 9.8020E-2 1.0692E-1 9.9109E-2
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FIGURE 5. Convergence Curve of GWO, INFO, SCA, and SSA on CEC 2019

The INFO algorithm demonstrates strong performance on
the CEC 2019 test functions when compared to GWO, SCA,
and SSA in Figure 5. It exhibits rapid convergence initially,
particularly notable in functions C1, C2, C3, and C5, often
matching or surpassing the other algorithms' early
performance. INFO's stability is a key strength, maintaining
a consistent convergence rate across iterations, which is
evident in functions C7 and C8. Moreover, the algorithm's
ability to find high-quality solutions is highlighted in

function C9, where it achieves lower fitness values by the
final iterations. This consistent behavior across various
functions suggests that INFO is a robust option for solving
complex optimization problems, with a balance of speed,
stability, and solution accuracy that often outperforms its
counterparts in the given test scenarios.
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TABLE VI: WILCOXON AND FRIEDMAN NON-PARAMETRIC
TESTS ON CEC 2019

GWO INFO SCA SSA
Friedm
an

Value
2.15 1.35 3.95 2.55

Friedm
an

Rank
2 1 4 3

Wilcoxo
n P-
Value

4.2601E-02 - 5.0620E-03 2.8402E-02

The Friedman test and Wilcoxon signed-rank test were
conducted to compare the performance of the optimization
algorithms (GWO, INFO, SCA, SSA) across CEC2019
functions in Table VI. According to the Friedman value,
INFO achieved the best rank with a value of 1.35,
indicating its overall superior performance compared to the
other algorithms on CEC 2019. GWO and SSA attained
Friedman values of 2.15 and 2.55, respectively, placing
them in the second and third positions, while SCA had the
worst Friedman value of 3.95, indicating comparatively
poorer performance. The Friedman rank further
corroborates INFO's dominance, ranking it first among the
algorithms. The Wilcoxon P-values provide statistical
significance to these findings, with INFO exhibiting
significantly better performance compared to GWO (p =
0.0426), SCA (p = 0.005), and SSA (p = 0.0284). These
results underscore the effectiveness of the INFO algorithm
in optimization tasks and its potential as a preferred choice
for solving such problems.

IV. ELM-INFO CO2 Prediction Model

The INFO algorithm, is a novel optimization technique
aimed at improving the performance of the Extreme
Learning Machine (ELM) by optimizing its weight and bias
parameters. It operates through three main processes:
Updating Rule: INFO adjusts ELM weight and bias
parameters iteratively using a weighted mean approach
based on the fitness (objective function) value of individual
vectors representing weight and bias in the search space.
This adaptive updating mechanism enables efficient
exploration of the solution space, facilitating rapid
convergence towards optimal solutions.
Vector Combining: INFO combines information from
multiple candidate solutions by synthesizing vectors based
on their fitness values. This strategy enhances diversity in
the search process, preventing premature convergence to
suboptimal solutions and promoting robustness.
Local Search: INFO incorporates a local search
mechanism to refine candidate solutions near promising
regions. By perturbing existing solutions and evaluating
their fitness in the neighborhood, INFO fine-tunes
parameters and improves solution quality, balancing global
exploration with local exploitation.
Advantages of the INFO approach include:

1. Efficiency and Scalability: INFO's weighted mean
methodology enables rapid convergence, making it suitable
for large-scale optimization problems like carbon emission
prediction.
2. Robustness and Versatility: INFO's adaptive updating
rule and stochastic exploration strategy allow it to handle
diverse optimization landscapes effectively, ensuring robust
navigation of complex solution spaces.
3. Improved Generalization and Performance: INFO
optimizes ELM parameters to dataset characteristics,
leading to superior generalization capabilities and
performance compared to conventional ELM variants. This
adaptability enhances predictive accuracy and reliability in
real-world applications like carbon emission prediction.

Training and prediction are the two stages of the ELM-
INFO model's CO2 emission prediction process. The ELM-
INFO model is trained using a dataset of historical CO2
emissions and related input characteristics during the
training phase. This is accomplished by minimising the
error between the estimated and real CO2 emissions by
optimising the weights and biases of the ELM method. The
ELM-INFO method is used to estimate CO2 emissions
using a fresh set of data points that weren't in the training

Algorithm 1 : Pseudocode INFO - ELM
1: Split data into two parts (training and testing)
2: Initialize the population size, problem dimension,

maximum iteration , weights and bias randomly
3: Compute the fitness of each individual in the

population (ELM Model)
4: For g < = ����

5: For i < = � p

6: Select three solutions randomly
7: Compute �1, �2, �3
8: Update δ and σ
9: Updating rule stage
10: Compute the solutions �11

� and �2�
� using

Eqs. (9-12)
11: Vector combining stage
12: Compute the vectors �1

� using Eqs. (13-15)
13: Local search stage
14: Compute the local search agent using Eqs.

(17-20)
15: Compute the objective function value f(��,�

� )
16: If f(��,�

� ) < f(��,�
� ) then ��,�

�+1 = ��,�
�

17: Else ��,�
�+1 = ��,�

�

18: End for
19: Calculate the objective function value
20: End for
21: Return Fitness of best individual
22: Use Fitness to Train ELM model
23: Test ELM-INFO with text data
24: Evaluate ELM-INFO with key metrics
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set during the prediction stage. According to Figure 4, the
initial step involves splitting the dataset into training and
testing sets. Next, the parameters of the INFO algorithm are
initialized, including the population size, problem
dimension, maximum iterations, and the random
initialization of weight and bias values within the range -1
to 1 for the ELM model. Subsequently, the fitness function
of each individual in the population is determined based on
the initial weight and bias values. These weight and bias
values are utilized to train the ELM model on the training
dataset, and the root mean squared error (RMSE) score of
the model is returned as the fitness score for that individual.
The INFO operators then continuously modify the vectors
representing each individual in the population. If the
maximum number of iterations is not attained, the process
returns to the step of calculating the fitness of each
individual and adjusting their vectors to achieve better
fitness scores through the INFO operators. Upon reaching
the maximum number of iterations, INFO returns the vector
of the best individual, which contains the optimized bias
and weight values. These values are used to establish the
ELM model, which is then tested on the unseen testing
dataset. The model's performance is evaluated using key
metrics specified in the equations. The ELM-INFO
pseudocode is described by Algorithm 1.

A. Data Preparation
In this research, we acquired a quarterly dataset
encompassing diverse elements influencing CO2 emission
in Japan (https://data.worldbank.org/country/Japan). This
dataset is compiled from real-time measurements of these
contributing factors, spanning from the year 1980 to 2021.
The dataset comprise of 168 data points, during the
experimental phase, all input features underwent
normalization using the min–max normalization process
specified in Equation (24), ensuring values fall within the [-
1, 1] range. Each model employed an 80% training dataset
and a 20% test set partition. This division is consistent
across all models.

�' = �−min�  
max�  −min�  

∗ 2 − 1 (24)
� represents the initial value, �' signifies the scaled value,
max�  denotes the maximum value and min� stands for the
minimum value of feature �. Table VII displays the initial 5
data points following normalization. In Table VIII, the
significance and meaning of each feature is elaborated. The
input features for the training models encompass EG, NR,
TI, and TR, with CO2 serving as the output or predicted
variable. The correlation score between each feature in the
dataset is given in Figure 6, with a heatmap ranging from -1
to 1. Values near to 1 indicate a strong positive correlation.
The plot in Figure 7 visually represents the relationship
between each input variable and the dependent variable. It
is noticeable that EG, TI, and TR exhibit a more linearly
separable relationship with CO2.

B. ELM-INFO Complexity
1. Matrix Multiplication and Inversion in ELM (Object
Function): � � ⋅ ℎ2 + ℎ3 for training and testing the ELM,
considering the hidden layer's output calculation and the
Moore-Penrose pseudoinverse.
2. Fitness Calculation for Each Individual: Calculating
the fitness of each individual via the evaluation of the
objective function, the complexity is
� � ⋅ � ⋅ ℎ2 + ℎ3 per iteration.
3. Population Updates and Vector Operations: These
operations include INFO vector operations (local search,
vector combination, and Update rule) and comparisons,
typically �(�) per iteration.
4. Overall Complexity: The loop across iteration
multiplies the per-iteration complexity by the number of
generations, resulting in � � ⋅ � ⋅ � ⋅ ℎ2 + ℎ3

Thus, the detailed Big O notation for the complexity of
integrating INFO with ELM, considering the iteration,
population, samples, features, and hidden neurons, is � � ⋅
� ⋅ � ⋅ ℎ2 + ℎ3 . This notation reflects the impact of
algorithmic parameters and model architecture on
computational complexity. Where ℎ2 and ℎ3 relate to
operations involving the hidden layer neurons in the
Extreme Learning Machine (ELM). � denote the number of
iterations in the optimization process. � Denotes the
population size of the optimization algorithm. � refers to
the number of samples in the dataset. In ELM, it affects the
complexity of operations like computing the output of the
hidden layer, which involves all samples.

V. ELM-Model Optimization Evaluation

All of the models in this work use Root Square Root Error
(RMSE) as their optimization function. To be clear, the
comparison model was built and evaluated using the model
parameters that correspond to the lowest RMSE values
between the predicted data and the actual data across the
training period, with respect to the ELM model, the
optimization algorithms optimized the weight and bias of
the neurons of the ELM model, with upper and lower
bounds of -1 and 1 of the weight and bias, respectively. The
settings for each of the three optimization techniques are
shown in Table I.

TABLE VII
DATASET SAMPLE

S/
N

Year CO2 EG NR TI TR

1 1980Q
1

2.09060
1

0.00000
0

1.00000
0

0.00000
0

0.55846
5

2 1980Q
2

2.08637
2

0.01616
4

0.95320
3

0.16340
4

0.56766
9

3 1980Q
3

2.08142
4

0.03134
5

0.91009
4

0.28507
5

0.57503
7

4 1980Q
4

2.07574
7

0.04557
1

0.87294
0

0.37697
2

0.58060
6

5 1981Q
1

2.06932
8

0.05886
6

0.84429
0

0.44601
5

0.58440
6
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TABLE VIII
FEATURE DESCRIPTION

Symbol Variables Measurement

EG Economic Growth Per Capita 2015
US$ Constant

NR Natural resources % of GDP

TI Technological
Innovation

Addition of patent
resident and nonresident

CO2 Carbon emissions Per Capita

TR Trade Openess % of GDP

FIGURE 6. Data Correlation HeatMap

FIGURE 7. Input Features vs Output Feature

A. Model Evaluation
To evaluate the efficiency of the five models in this study,
we used five statistical metrics: mean square error (MSE),
mean absolute error (MAE), mean absolute percentage
error (MAPE), coefficient of determination (R2), and root
mean squared error (RMSE). The models' overall
performance is measured using R2, RMSE, MAE, MAPE,
and MSE.

�2 = ∑�=1
�   ���−���� ���−����

2

∑�=1
�   ���−���� 2∑�=1

�   ���−���� 2 (25)

���� = 1
�

∑�=1
�   ��� − ���

2 (26)

��� = 1
�

∑�=1
�   ��� − ��� (27)

���� = 1
�

∑�=1
�   ���−���

����
(28)

��� = 1
�

∑�=1
�   ��� − ���

2 (29)

When it comes to CO2 prediction, models error is
considered to be less when the values of RMSE, MAE,
MAPE, and MSE are closer to zero. A R2 value close to 1
indicates better model accuracy, implying less error in real-
world use. In equations (25-29), the terms for the observed,
simulated, and mean observed CO2 levels are ���, ���, and
���� . The evaluation measures include the RMSE, MAE,
and MAPE.

VI. Result and Discussion
In Table IX and Table X, the performance metrics for
different models, specifically the R2, RMSE, MSE, MAE,
and MAPE are presented for both test and train datasets.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390408

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8 VOLUME XX, 2017

The models under consideration are variants of the Extreme
Learning Machine (ELM) enhanced with various
optimization algorithms. The integration of metaheuristic
algorithms, such GWO, SSA, SCA, and INFO, to optimize
the weights and biases of the ELM has yielded promising
results in CO2 prediction. We evaluate the performance of
different models in predicting CO2. Notably, the proposed
ELM-INFO consistently demonstrates the most favorable
outcomes among the models, showcasing its superiority in
both the training and testing phases.

TABLE IX
RESULTS OF EVALUATION METRICS OFMODEL ON TRAINING DATASET

Mode
ls

R2 RMSE MSE MAE MAPE

ELM-
GWO

0.952339
782

0.022051
792

0.000486
282

0.016819
195

0.008582
227

ELM-
INFO

0.963078
653

0.019409
066

0.000376
712

0.013621
682

0.006227
307

ELM-
SCA

0.933790
769

0.025991
129

0.000675
539

0.019702
901

0.010292
153

ELM-
SSA

0.944950
219

0.023699
745

0.000561
678

0.016889
532

0.008007
714

ELM 0.905737
975

0.031012
32

0.000961
764

0.025458
567

0.013968
315

In the training phase, as seen in Table IX, the ELM-GWO
model exhibits a substantial improvement with an R2 value
of 0.9523, showcasing the efficacy of the GWO in refining
model parameters. The low values in RMSE (0.0221), MSE
(0.0005), MAE (0.0168), and MAPE (0.0086) further
validate the success of GWO in minimizing prediction
errors. Notably, the proposed ELM-INFO model achieves
impressive metrics, particularly with the highest R2 (0.9631)
and lowest values in RMSE (0.0194), MSE (0.0003), MAE
(0.0136), and MAPE (0.0062) among the models,
highlighting the superiority of the INFO algorithm in
enhancing the learning process of ELM.
In Table X, which demonstrates the results from the testing
phase, the models maintain their superior performance,
validating their generalization capabilities. ELM-INFO
continues to obtain better precision with the highest R2
(0.9742), emphasizing its robustness in predicting CO2 on
unseen data. ELM-GWO follows closely with a notable R2
of 0.9588, showcasing the algorithm's success in
maintaining predictive accuracy beyond the training dataset
ELM-SSA and ELM-SCA also perform admirably in the
testing phase, underscoring the adaptability of these
algorithms in optimizing the ELM for diverse datasets.
While the base ELM model performs competently,
particularly in the testing phase with an R2 of 0.9055, the

incorporation of metaheuristic algorithms consistently
outperforms the baseline. This reinforces the idea that
leveraging sophisticated optimization techniques
significantly enhances the ELM's predictive capabilities. of
each model during the optimization process.
The fitness function, as expressed in equation 26, measures
the ability of the model to fit the training data with less
error. ELM-INFO exhibits the fastest convergence rate,
indicating that it reaches optimal performance more
efficiently than the
other models. This rapid convergence is attributed to the
INFO algorithm's capacity to efficiently identify the best
parameters for ELM for the training data, thereby
accelerating the optimization process and leading to better
model performance.

TABLE X
RESULTS OF EVALUATION METRICS OFMODEL ON TESTING DATASET

Mode
ls

R2 RMSE MSE MAE MAPE

ELM-
GWO

0.958780
452

0.024512
027

0.000600
839

0.018633
236

0.007544
524

ELM-
INFO

0.974244
166

0.019376
057

0.000375
432

0.013637
76

0.006097
756

ELM-
SCA

0.945884
136

0.028086
001

0.000788
823

0.022400
228

0.008864
959

ELM-
SSA

0.958883
033

0.024481
507

0.000599
344

0.017449
19

0.007583
483

ELM 0.905530
516

0.037108
498

0.001377
041

0.030311
853

0.011542
603

FIGURE 8. Convergence of Curve of Models on Fitness Function

In order to maintain fairness and reduce the potential for
bias in our evaluation, we have used 10-fold cross-
validation.

TABLE XI: RESULTS OF EVALUATION METRICS BY PREDICTION
MODELS ON 10 FOLD CROSS VALIDATION ON TRAIN DATASET

Model
s

R2 RMSE MSE MAE MAPE

ELM-
GWO

0.9575
13956

0.021764
385

0.000477
113

0.016149
706

0.007293
833

ELM-
INFO

0.9672
96012

0.019102
639

0.000365
262

0.014049
223

0.006327
781

ELM-
SCA

0.9415
78115

0.025546
874

0.000653
391

0.019058
601

0.008698
642

ELM-
SSA

0.9631
09812

0.020310
663

0.000412
736

0.014974
092

0.006764
987

ELM 0.9227
76666

0.029341
083

0.000863
160

0.023096
790

0.011144
280
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TABLE XII: RESULTS OF EVALUATION METRICS BY
PREDICTION MODELS ON 10 FOLD CROSS VALIDATION TEST

DATASET

Tables XI and XII provided compare the performance of
different ELM-based models using evaluation metrics from
10-fold cross-validation on train and test datasets. The
ELM-INFO model outperforms others in nearly all metrics,
indicating its superior predictive accuracy and
generalization capability. It achieves the highest R2 values
and the lowest error rates across RMSE, MSE, MAE, and
MAPE on both train and test datasets, reflecting consistent
and reliable performance. ELM-GWO and ELM-SSA also
show strong results, significantly better than the standalone
ELM. However, ELM-SCA and the standalone ELM lag in
performance, as seen by their lower R2 values and higher
error measures. The consistent success of ELM-INFO
across different metrics and datasets underscores the

effectiveness of integrating INFO optimization with ELM
for predictive tasks. The ELM-INFO model, with an R2 of
0.967 on the training dataset and 0.966 on the test dataset,
showcases its superior fit compared to the other models. Its
predictive accuracy is further highlighted by the lowest
error metrics, with an RMSE of 0.0191 and 0.0189, MSE of
approximately 0.000365 and 0.000363, MAE of 0.0140,
and MAPE of 0.0063 on train and test datasets, respectively.
ELM-GWO follows closely, while ELM-SCA and ELM-
SSA trail behind yet still outperform the standalone ELM,
which has the lowest R2 and highest error rates across both
datasets, indicating a less accurate model.

Figures 9 and 10 are scatterplots of the predicted and actual
CO2 for the training testing dataset. Each point on the plot
represents a single data point in the testing dataset, with the
x-axis showing the predicted CO2 and the y-axis showing
the actual CO2 level. The ideal scenario would be for all of
the data points to fall on the diagonal line, which would
indicate that the model is perfectly predicting the actual
CO2 levels. However, in practice, there will always be
some deviation between the predicted and actual values.

FIGURE 9. Predicted CO2 versus Actual CO2 of Prediction Models on Training Dataset

Models R2 RMSE MSE MAE MAPE

ELM-
GWO

0.952
8471
51

0.021700
895

0.000480
003

0.016177
996

0.007287
746

ELM-
INFO

0.966
6062
77

0.018914
425

0.000362
609

0.014058
011

0.006324
416

ELM-
SCA

0.935
0787
57

0.025408
704

0.000672
191

0.019223
234

0.008616
953

ELM-
SSA

0.960
5722
12

0.020050
024

0.000413
190

0.015040
702

0.006735
040

ELM 0.888
9648
87

0.032153
275

0.001118
387

0.024519
029

0.010480
358
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FIGURE 10. Predicted CO2 versus Actual CO2 of Prediction Models on Testing Dataset

The scatterplots in Figures 9 and 10 prove that the ELM-
INFO model produced more accurate outcomes predicting
the actual CO2. Compared to ELM, ELM-SSA, and ELM-
SCA, most of the points are grouped along the diagonal line,
with very few exceptions. This suggests that for most of the
data points in the training and testing dataset, the model can
predict the CO2with reasonable accuracy. In comparison to
the other models, the scatter plots demonstrate that ELM-
INFO can properly learn the connection between the input
characteristics and CO2 and can produce precise estimations
for both the training and testing datasets. The training and
testing datasets' respective R2 values of 0.9631 and 0.9742
show a very high correlation between the expected and
actual CO2 levels. With a very tiny average variation
between the anticipated and actual CO2 emission, the model
is producing highly reliable predictions, as evidenced by the
testing dataset's RMSE and MAPE values of 0.0194 and
0.0062, respectively.

C. Significance of Study:
Economic variables, including economic growth (EG),
trade openness (TR), and technological innovation (TI),
Natural Resources (NR) are carefully selected as features of
dataset retrieved from worldbank and integrated into the
model as input features. These variables represent key
dimensions of economic activity and development, each
contributing to the overall dynamics of CO2 emissions.
Economic growth (EG) serves as a primary indicator of
economic activity and prosperity, capturing the rate of
increase in a country's gross domestic product (GDP) over
time. The integration of EG into the model allows us to
assess the impact of economic expansion on CO2 emissions,

reflecting the energy consumption and industrial output
associated with economic growth. NR refer to the
availability or utilization of natural resources within a
country or region. NR also represent factors such as the
abundance of raw materials and energy resources (e.g.,
fossil fuels), The inclusion of NR in the models input data,
gives into how the availability or exploitation of natural
resources influences CO2 emissions. TI refers to
advancements or changes in technology that affect
economic productivity, efficiency, and industrial processes.
TI also represent factors such as investments in research
and development, the adoption of cleaner or more efficient
technologies, or shifts in industrial practices. Including TI
in the models in input data enables this research to examine
how technological innovation influences CO2 emissions.
TR involves international trade relationships and patterns of
a country or region. TR encompass variables related to
imports, exports, trade agreements, and globalization
processes. By incorporating TR into the analysis, this
research can explore how international trade affects CO2
emissions. For example, countries with strong export-
oriented industries may experience economic growth driven
by international demand but may also face challenges
related to environmental degradation associated with
increased production and trade..
Fig. 10 shows the permutation importance of the features
for predicting CO2 using the ELM-INFO. This means that
the importance of each feature is measured by the degree to
which the model's performance diminishes when that
feature is permuted; the higher the permutation importance,
the more important the feature is for predicting CO2. It is
important to note that the permutation importance of a
feature is not the same as its correlation with CO2.
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Correlation only measures how strongly two variables are
related, while permutation importance measures how
significant a feature is for predicting CO2. The permutation
importance values in Figure 11 depend on the evaluation
metric used to evaluate model performance, with higher
values indicating greater importance. We used the MSE
metric to evaluate the importance of each feature, and a
positive permutation importance score suggests that the
feature is important, as permuting its values leads to an
increase in mean squared error. The most important feature,
Economic Growth (EG), has a permutation importance of
0.199, meaning that the model's error (MSE) increased by
19% when the EG feature is permuted. The other features,
such as Technological Innovation (TI) and Trade openness
(TR), have a significant impact by increasing the model
error by 8.1% and 7.6%, respectively.
The key observations from this study are:
According to the dataset, economic growth is the factor that
is most likely to contribute to CO2 emissions, as indicated
by its high feature relevance value. This is because rise in
economic growth is linked to rise in energy and industrial
activity levels, both of which boost CO2 emissions [42].
With a substantial permutation relevance, technological
innovation appears to be an important contributor to CO2
emissions in the dataset as well. This is due to the fact that
technological advancement can result in the creation of
both dirtier and cleaner technology.
For instance, although new methods of extracting fossil
fuels might raise CO2 emissions, renewable energy
technology can lower CO2 emissions [43], [44].
Additionally, trade openness has a moderate value,
indicating that it has a significant role on CO2 emissions. It
is crucial to remember that trade openness can affect CO2
emissions in both good and negative ways. Trade openness,
for instance, can result in the development of greener
technologies that lower CO2 emissions in poorer nations.
Open trade, however, may also result in the relocation of
companies that produce pollution to emerging nations,
raising CO2 emissions [45], [46].
Because natural resources are used less frequently in the
data, it obtained the least significant factor influencing CO2
emissions in this dataset, as indicated by their lowest
permutation relevance. Despite the fact that most nations
possessing natural resources, such coal and oil, are more
inclined to use them to produce energy, which increases
CO2 emissions [47].
The crucial elements influencing CO2 emissions in the
dataset have been revealed by the ELM-INFO's permutation
significance analysis, offering a plethora of priceless
information to stakeholders and policymakers entrusted
with creating effective environmental legislation. These
results do more than just indicate the relative significance
of each component; they also function as an outline for
focused data collecting and analysis. The ELM-INFO
model helps decision-makers pinpoint and identify the

major causes of CO2 emissions, facilitating more effective
and efficient policy actions. In the end, the ELM-INFO is a
useful tool for developing comprehensive plans and
evidence-based policies targeted at addressing CO2
emissions and reducing

their negative consequences.

FIGURE 11. Input Features Permutation Importance

The model predictive capacity could be instrumental in
informing and shaping environmental policies through the
following step
1. Policy Targeting and Prioritization: The model helps
identify the main sources and areas of CO2 emissions by
analyzing economic growth, trade, and innovation impacts.
This allows for focused policy action on the most impactful
sectors.
2. Long-Term Planning and Adaptation: Forecasting
CO2 emissions assists in planning and adapting for future
environmental challenges, enabling the development of
strategies to mitigate climate change effects and enhance
resilience.
3. Policy Evaluation and Improvement: Continuous
assessment and refinement of the model based on actual
data enable the iterative enhancement of policy measures,
ensuring their effectiveness and efficiency.
4. Stakeholder Engagement and Communication:
Utilizing predictive insights as a communication tool aids
in engaging stakeholders, increasing awareness of
environmental issues, and garnering support for policy
initiatives through effective visualization of CO2 impact
scenarios.

VII. CONCLUSION
In summary, this study concentrated on the creation and
assessment of a brand-new optimisation algorithm called
INFO that was combined with the ELM for CO2 emissions
in an effort to enhance the model's overall performance.
This allowed for quick adaptation and learning from the
dataset through the optimisation of the weight and bias. A
thorough evaluation of the INFO algorithm's performance
was conducted by comparing it to other well-known

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390408

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8 VOLUME XX, 2017

algorithms. The thorough examination of INFO's
performance on test functions for classical optimisation
revealed several noteworthy strengths, especially when it
came to obtaining optimum solutions for both unimodal and
multi-modal functions. Convergence plots also showed how
quickly INFO converged and how effective INFO will be at
improving the weight and bias of ELM. Through a two-
stage training and prediction procedure, the suggested
ELM-INFO model applied to the prediction of CO2
emissions demonstrated its effectiveness. The prediction
phase showed the model's capacity to estimate CO2
emissions using unobserved data, whereas the training
phase entailed optimising ELM's weights and biases using
INFO. Key performance indicators for the model, such as
MSE, MAE, MAPE, R2, and RMSE, were used to assess its
performance. With an outstanding R2 (0.9631) and lowest
values in training for RMSE (0.0194), MSE (0.0003), MAE
(0.0136), and MAPE (0.0062), the findings continuously
demonstrated the superiority of the ELM-INFO model. Its
resilience in forecasting CO2 emissions for training and
testing was demonstrated by its strong performance in
testing, with an R2 of 0.9742 and the lowest values in
RMSE (0.01937), MSE (0.00037), MAE (0.0136), and
MAPE (0.0060). Using ELM-INFO, the study also carried
out a permutation importance analysis to ascertain the
relative importance of important variables influencing CO2
emissions in the dataset. The largest impact was clearly
economic growth, which raised the model's MSE by 19%.
Trade openness and technological advancement came very
close behind, adding 7.6% and 8.1%, respectively, to the
model's MSE increases. With only a modest 4.1%
contribution, natural resources in the dataset showed the
least amount of effect on CO2 emissions. The study
provides focused treatments and policy options for
minimising the consequences of climate change by
identifying and prioritising important variables impacting
CO2 emissions. With its improved optimisation features,
the ELM-INFO model is a potent instrument for developing
evidence-based policies that seek to achieve sustainability
and resilience in the face of environmental difficulties.
Even though this study produced encouraging results, there
are a few limitations to be aware of. First off, the reliability
and the accuracy of the dataset used for testing and training
have a significant impact on the model's performance. Thus,
getting more and more varied datasets may improve the
generalizability and robustness of the model. Furthermore,
when the suggested approach is used to various geographic
locations or diverse datasets with distinctive features, it
may show particular limitations. In order to overcome these
constraints, contextual variances must be carefully taken
into account, and other variables that could affect CO2
emissions must be included. Subsequent developments of
ELM-INFO will concentrate on enhancing the model's
precision and suitability through the integration of more
and more diverse datasets. The model will undergo

additional validations in various temporal and geographical
settings to increase its flexibility and dependability in real-
world situations. A thorough grasp of the synergistic
impacts of various optimisation algorithms and machine
learning approaches on enhancing prediction accuracy may
also be obtained by investigating the possible integration of
these methods. Furthermore, examining the time-varying
dynamics of CO2 emissions and their correlation with
changing socio-economic variables may provide insightful
information for more accurate and prospective forecasts.
More work will be put into overcoming these constraints
and broadening the study's focus in order to support more
potent mitigation techniques for climate change.
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