Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141687
Название: Vector breathers in the Manakov system
Авторы: Gelash, A.
Raskovalov, A.
Дата публикации: 2023
Издатель: John Wiley and Sons Inc
Библиографическое описание: Gelash, A., & Raskovalov, A. (2023). Vector breathers in the Manakov system. Studies in Applied Mathematics, 150(3), 841-882. https://doi.org/10.1111/sapm.12558
Аннотация: We study theoretically the nonlinear interactions of vector breathers propagating on an unstable wavefield background. As a model, we use the two-component extension of the one-dimensional focusing nonlinear Schrödinger equation—the Manakov system. With the dressing method, we generate the multibreather solutions to the Manakov model. As shown previously in [D. Kraus, G. Biondini, and G. Kovačič, Nonlinearity 28(9), 3101, (2015)], the class of vector breathers is presented by three fundamental types I, II, and III. Their interactions produce a broad family of the two-component (polarized) nonlinear wave patterns. First, we demonstrate that the type I and the types II and III correspond to two different branches of the dispersion law of the Manakov system in the presence of the unstable background. Then, we investigate the key interaction scenarios, including collisions of standing and moving breathers and resonance breather transformations. Analysis of the two-breather solution allows us to derive general formulas describing phase and space shifts acquired by breathers in mutual collisions. The found expressions enable us to describe the asymptotic states of the breather interactions and interpret the resonance fusion and decay of breathers as a limiting case of infinite space shift in the case of merging breather eigenvalues. Finally, we demonstrate that only type I breathers participate in the development of modulation instability from small-amplitude perturbations withing the superregular scenario, while the breathers of types II and III, belonging to the stable branch of the dispersion law, are not involved in this process. © 2023 Wiley Periodicals LLC.
Ключевые слова: BREATHERS
INTEGRABLE SYSTEMS
MODULATION INSTABILITY
ROGUE WAVES
SOLITONS
DISPERSION (WAVES)
NONLINEAR EQUATIONS
BREATHER
DISPERSION LAW
INTEGRABLE SYSTEMS
MANAKOV SYSTEMS
MODULATION INSTABILITIES
NONLINEAR INTERACTIONS
ROGUE WAVES
SPACE SHIFT
TWO-COMPONENT
TYPE II
EIGENVALUES AND EIGENFUNCTIONS
URI: http://elar.urfu.ru/handle/10995/141687
Условия доступа: info:eu-repo/semantics/openAccess
other-oa
Идентификатор SCOPUS: 85147036900
Идентификатор WOS: 000916440600001
Идентификатор PURE: 36235783
ISSN: 0022-2526
1467-9590
DOI: 10.1111/sapm.12558
Сведения о поддержке: Russian Foundation for Basic Research, РФФИ, (19‐31‐60028); Russian Foundation for Basic Research, РФФИ; Ministry of Education and Science of the Russian Federation, Minobrnauka, (AAAA-A18-118020190095-4); Ministry of Education and Science of the Russian Federation, Minobrnauka; Russian Science Foundation, RSF, (19‐72‐30028); Russian Science Foundation, RSF
Funding text 1: The main part of the work was supported by the Russian Science Foundation (grant no. 19‐72‐30028). The work of A.G. on Section 6 and Appendix Section A.2 was supported by RFBR grant no. 19‐31‐60028. The work of A.R. on Appendix Sections A.1 and A.4 was performed in the framework of the state assignment of the Russian Ministry of Science and Education “Quantum” No. AAAA‐A18‐118020190095‐4. ; Funding text 2: The main part of the work was supported by the Russian Science Foundation (grant no. 19-72-30028). The work of A.G. on Section 6 and Appendix Section A.2 was supported by RFBR grant no. 19-31-60028. The work of A.R. on Appendix Sections A.1 and A.4 was performed in the framework of the state assignment of the Russian Ministry of Science and Education “Quantum” No. AAAA-A18-118020190095-4. The authors thank participants of Prof. V.E. Zakharov's seminar “Nonlinear Waves” and, especially, Prof. E.A. Kuznetsov for fruitful discussions.
Карточка проекта РНФ: Russian Foundation for Basic Research, РФФИ, (19-31-60028); Russian Foundation for Basic Research, РФФИ; Ministry of Education and Science of the Russian Federation, Minobrnauka, (AAAA-A18-118020190095-4); Ministry of Education and Science of the Russian Federation, Minobrnauka; 19-72-30028
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85147036900.pdf20,81 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.