Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141687
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGelash, A.en
dc.contributor.authorRaskovalov, A.en
dc.date.accessioned2025-02-25T10:52:11Z-
dc.date.available2025-02-25T10:52:11Z-
dc.date.issued2023-
dc.identifier.citationGelash, A., & Raskovalov, A. (2023). Vector breathers in the Manakov system. Studies in Applied Mathematics, 150(3), 841-882. https://doi.org/10.1111/sapm.12558apa_pure
dc.identifier.issn0022-2526-
dc.identifier.issn1467-9590-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Green Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85147036900&doi=10.1111%2fsapm.12558&partnerID=40&md5=f89afb08d56cf1c412745d0641bb66c81
dc.identifier.otherhttps://arxiv.org/pdf/2211.07014pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141687-
dc.description.abstractWe study theoretically the nonlinear interactions of vector breathers propagating on an unstable wavefield background. As a model, we use the two-component extension of the one-dimensional focusing nonlinear Schrödinger equation—the Manakov system. With the dressing method, we generate the multibreather solutions to the Manakov model. As shown previously in [D. Kraus, G. Biondini, and G. Kovačič, Nonlinearity 28(9), 3101, (2015)], the class of vector breathers is presented by three fundamental types I, II, and III. Their interactions produce a broad family of the two-component (polarized) nonlinear wave patterns. First, we demonstrate that the type I and the types II and III correspond to two different branches of the dispersion law of the Manakov system in the presence of the unstable background. Then, we investigate the key interaction scenarios, including collisions of standing and moving breathers and resonance breather transformations. Analysis of the two-breather solution allows us to derive general formulas describing phase and space shifts acquired by breathers in mutual collisions. The found expressions enable us to describe the asymptotic states of the breather interactions and interpret the resonance fusion and decay of breathers as a limiting case of infinite space shift in the case of merging breather eigenvalues. Finally, we demonstrate that only type I breathers participate in the development of modulation instability from small-amplitude perturbations withing the superregular scenario, while the breathers of types II and III, belonging to the stable branch of the dispersion law, are not involved in this process. © 2023 Wiley Periodicals LLC.en
dc.description.sponsorshipRussian Foundation for Basic Research, РФФИ, (19‐31‐60028); Russian Foundation for Basic Research, РФФИ; Ministry of Education and Science of the Russian Federation, Minobrnauka, (AAAA-A18-118020190095-4); Ministry of Education and Science of the Russian Federation, Minobrnauka; Russian Science Foundation, RSF, (19‐72‐30028); Russian Science Foundation, RSFen
dc.description.sponsorshipFunding text 1: The main part of the work was supported by the Russian Science Foundation (grant no. 19‐72‐30028). The work of A.G. on Section 6 and Appendix Section A.2 was supported by RFBR grant no. 19‐31‐60028. The work of A.R. on Appendix Sections A.1 and A.4 was performed in the framework of the state assignment of the Russian Ministry of Science and Education “Quantum” No. AAAA‐A18‐118020190095‐4. ; Funding text 2: The main part of the work was supported by the Russian Science Foundation (grant no. 19-72-30028). The work of A.G. on Section 6 and Appendix Section A.2 was supported by RFBR grant no. 19-31-60028. The work of A.R. on Appendix Sections A.1 and A.4 was performed in the framework of the state assignment of the Russian Ministry of Science and Education “Quantum” No. AAAA-A18-118020190095-4. The authors thank participants of Prof. V.E. Zakharov's seminar “Nonlinear Waves” and, especially, Prof. E.A. Kuznetsov for fruitful discussions.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherJohn Wiley and Sons Incen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightsother-oaother
dc.sourceStudies in Applied Mathematics2
dc.sourceStudies in Applied Mathematicsen
dc.subjectBREATHERSen
dc.subjectINTEGRABLE SYSTEMSen
dc.subjectMODULATION INSTABILITYen
dc.subjectROGUE WAVESen
dc.subjectSOLITONSen
dc.subjectDISPERSION (WAVES)en
dc.subjectNONLINEAR EQUATIONSen
dc.subjectBREATHERen
dc.subjectDISPERSION LAWen
dc.subjectINTEGRABLE SYSTEMSen
dc.subjectMANAKOV SYSTEMSen
dc.subjectMODULATION INSTABILITIESen
dc.subjectNONLINEAR INTERACTIONSen
dc.subjectROGUE WAVESen
dc.subjectSPACE SHIFTen
dc.subjectTWO-COMPONENTen
dc.subjectTYPE IIen
dc.subjectEIGENVALUES AND EIGENFUNCTIONSen
dc.titleVector breathers in the Manakov systemen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.doi10.1111/sapm.12558-
dc.identifier.scopus85147036900-
local.contributor.employeeGelash A., Skolkovo Institute of Science and Technology, Moscow, Russian Federation, Institute of Automation and Electrometry SB RAS, Novosibirsk, Russian Federationen
local.contributor.employeeRaskovalov A., Skolkovo Institute of Science and Technology, Moscow, Russian Federation, Mikheev Institute of Metal Physics, Ural Branch, RAS, Ekaterinburg, Russian Federation, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russian Federationen
local.description.firstpage841
local.description.lastpage882
local.issue3-
local.volume150-
dc.identifier.wos000916440600001-
local.contributor.departmentSkolkovo Institute of Science and Technology, Moscow, Russian Federationen
local.contributor.departmentInstitute of Automation and Electrometry SB RAS, Novosibirsk, Russian Federationen
local.contributor.departmentMikheev Institute of Metal Physics, Ural Branch, RAS, Ekaterinburg, Russian Federationen
local.contributor.departmentInstitute of Physics and Technology, Ural Federal University, Ekaterinburg, Russian Federationen
local.identifier.pure36235783-
local.identifier.eid2-s2.0-85147036900-
local.fund.rsfRussian Foundation for Basic Research, РФФИ, (19-31-60028); Russian Foundation for Basic Research, РФФИ; Ministry of Education and Science of the Russian Federation, Minobrnauka, (AAAA-A18-118020190095-4); Ministry of Education and Science of the Russian Federation, Minobrnauka; 19-72-30028
local.identifier.wosWOS:000916440600001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85147036900.pdf20,81 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.