Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/141687
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Gelash, A. | en |
dc.contributor.author | Raskovalov, A. | en |
dc.date.accessioned | 2025-02-25T10:52:11Z | - |
dc.date.available | 2025-02-25T10:52:11Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Gelash, A., & Raskovalov, A. (2023). Vector breathers in the Manakov system. Studies in Applied Mathematics, 150(3), 841-882. https://doi.org/10.1111/sapm.12558 | apa_pure |
dc.identifier.issn | 0022-2526 | - |
dc.identifier.issn | 1467-9590 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access; Green Open Access | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147036900&doi=10.1111%2fsapm.12558&partnerID=40&md5=f89afb08d56cf1c412745d0641bb66c8 | 1 |
dc.identifier.other | https://arxiv.org/pdf/2211.07014 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/141687 | - |
dc.description.abstract | We study theoretically the nonlinear interactions of vector breathers propagating on an unstable wavefield background. As a model, we use the two-component extension of the one-dimensional focusing nonlinear Schrödinger equation—the Manakov system. With the dressing method, we generate the multibreather solutions to the Manakov model. As shown previously in [D. Kraus, G. Biondini, and G. Kovačič, Nonlinearity 28(9), 3101, (2015)], the class of vector breathers is presented by three fundamental types I, II, and III. Their interactions produce a broad family of the two-component (polarized) nonlinear wave patterns. First, we demonstrate that the type I and the types II and III correspond to two different branches of the dispersion law of the Manakov system in the presence of the unstable background. Then, we investigate the key interaction scenarios, including collisions of standing and moving breathers and resonance breather transformations. Analysis of the two-breather solution allows us to derive general formulas describing phase and space shifts acquired by breathers in mutual collisions. The found expressions enable us to describe the asymptotic states of the breather interactions and interpret the resonance fusion and decay of breathers as a limiting case of infinite space shift in the case of merging breather eigenvalues. Finally, we demonstrate that only type I breathers participate in the development of modulation instability from small-amplitude perturbations withing the superregular scenario, while the breathers of types II and III, belonging to the stable branch of the dispersion law, are not involved in this process. © 2023 Wiley Periodicals LLC. | en |
dc.description.sponsorship | Russian Foundation for Basic Research, РФФИ, (19‐31‐60028); Russian Foundation for Basic Research, РФФИ; Ministry of Education and Science of the Russian Federation, Minobrnauka, (AAAA-A18-118020190095-4); Ministry of Education and Science of the Russian Federation, Minobrnauka; Russian Science Foundation, RSF, (19‐72‐30028); Russian Science Foundation, RSF | en |
dc.description.sponsorship | Funding text 1: The main part of the work was supported by the Russian Science Foundation (grant no. 19‐72‐30028). The work of A.G. on Section 6 and Appendix Section A.2 was supported by RFBR grant no. 19‐31‐60028. The work of A.R. on Appendix Sections A.1 and A.4 was performed in the framework of the state assignment of the Russian Ministry of Science and Education “Quantum” No. AAAA‐A18‐118020190095‐4. ; Funding text 2: The main part of the work was supported by the Russian Science Foundation (grant no. 19-72-30028). The work of A.G. on Section 6 and Appendix Section A.2 was supported by RFBR grant no. 19-31-60028. The work of A.R. on Appendix Sections A.1 and A.4 was performed in the framework of the state assignment of the Russian Ministry of Science and Education “Quantum” No. AAAA-A18-118020190095-4. The authors thank participants of Prof. V.E. Zakharov's seminar “Nonlinear Waves” and, especially, Prof. E.A. Kuznetsov for fruitful discussions. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | John Wiley and Sons Inc | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | other-oa | other |
dc.source | Studies in Applied Mathematics | 2 |
dc.source | Studies in Applied Mathematics | en |
dc.subject | BREATHERS | en |
dc.subject | INTEGRABLE SYSTEMS | en |
dc.subject | MODULATION INSTABILITY | en |
dc.subject | ROGUE WAVES | en |
dc.subject | SOLITONS | en |
dc.subject | DISPERSION (WAVES) | en |
dc.subject | NONLINEAR EQUATIONS | en |
dc.subject | BREATHER | en |
dc.subject | DISPERSION LAW | en |
dc.subject | INTEGRABLE SYSTEMS | en |
dc.subject | MANAKOV SYSTEMS | en |
dc.subject | MODULATION INSTABILITIES | en |
dc.subject | NONLINEAR INTERACTIONS | en |
dc.subject | ROGUE WAVES | en |
dc.subject | SPACE SHIFT | en |
dc.subject | TWO-COMPONENT | en |
dc.subject | TYPE II | en |
dc.subject | EIGENVALUES AND EIGENFUNCTIONS | en |
dc.title | Vector breathers in the Manakov system | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/submittedVersion | en |
dc.identifier.doi | 10.1111/sapm.12558 | - |
dc.identifier.scopus | 85147036900 | - |
local.contributor.employee | Gelash A., Skolkovo Institute of Science and Technology, Moscow, Russian Federation, Institute of Automation and Electrometry SB RAS, Novosibirsk, Russian Federation | en |
local.contributor.employee | Raskovalov A., Skolkovo Institute of Science and Technology, Moscow, Russian Federation, Mikheev Institute of Metal Physics, Ural Branch, RAS, Ekaterinburg, Russian Federation, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russian Federation | en |
local.description.firstpage | 841 | |
local.description.lastpage | 882 | |
local.issue | 3 | - |
local.volume | 150 | - |
dc.identifier.wos | 000916440600001 | - |
local.contributor.department | Skolkovo Institute of Science and Technology, Moscow, Russian Federation | en |
local.contributor.department | Institute of Automation and Electrometry SB RAS, Novosibirsk, Russian Federation | en |
local.contributor.department | Mikheev Institute of Metal Physics, Ural Branch, RAS, Ekaterinburg, Russian Federation | en |
local.contributor.department | Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russian Federation | en |
local.identifier.pure | 36235783 | - |
local.identifier.eid | 2-s2.0-85147036900 | - |
local.fund.rsf | Russian Foundation for Basic Research, РФФИ, (19-31-60028); Russian Foundation for Basic Research, РФФИ; Ministry of Education and Science of the Russian Federation, Minobrnauka, (AAAA-A18-118020190095-4); Ministry of Education and Science of the Russian Federation, Minobrnauka; 19-72-30028 | |
local.identifier.wos | WOS:000916440600001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85147036900.pdf | 20,81 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.