Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141543
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKulyabin, M.en
dc.contributor.authorConstable, P. A.en
dc.contributor.authorZhdanov, A.en
dc.contributor.authorLee, I. O.en
dc.contributor.authorThompson, D. A.en
dc.contributor.authorMaier, A.en
dc.date.accessioned2025-02-25T10:48:58Z-
dc.date.available2025-02-25T10:48:58Z-
dc.date.issued2024-
dc.identifier.citationKulyabin, M., Constable, P. A., Zhdanov, A., Lee, I. O., Thompson, D. A., & Maier, A. (2024). Attention to the Electroretinogram: Gated Multilayer Perceptron for ASD Classification. IEEE Access, 12, 52352-52362. https://doi.org/10.1109/ACCESS.2024.3386638apa_pure
dc.identifier.issn2169-3536-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85190174297&doi=10.1109%2fACCESS.2024.3386638&partnerID=40&md5=b7f4e5d724077ff5dd8330efdd3fb37e1
dc.identifier.otherhttps://ieeexplore.ieee.org/ielx7/6287639/6514899/10495056.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141543-
dc.description.abstractThe electroretinogram (ERG) is a clinical test that records the retina's electrical response to a brief flash of light as a waveform signal. Analysis of the ERG signal offers a promising non-invasive method for studying different neurodevelopmental and neurodegenerative disorders. Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by poor communication, reduced reciprocal social interaction, and restricted and repetitive stereotyped behaviors that should be detected as early as possible to ensure timely and appropriate intervention to support the individual and their family. In this study, we applied gated Multilayer Perceptron (gMLP) for the light-adapted ERG waveform classification as an effective alternative to Transformers. This study presents the first application of gMLP for ASD classification, which employs basic multilayer perceptrons with fewer parameters than Transformers. We compared the performance of different time-series models on an ASD-Control dataset and found that the superiority of gMLP in classification accuracy was the best at 89.7% compared to alternative models and supports the use of gMLP in classification models based on ERG recordings involving case-control comparisons. © 2013 IEEE.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-nc-ndother
dc.sourceIEEE Access2
dc.sourceIEEE Accessen
dc.subjectASDen
dc.subjectDEEP LEARNINGen
dc.subjectELECTRORETINOGRAMen
dc.subjectERGen
dc.subjectGATED MLPen
dc.subjectTRANSFORMERen
dc.subjectWAVEFORMen
dc.subjectCLASSIFICATION (OF INFORMATION)en
dc.subjectDEEP LEARNINGen
dc.subjectMULTILAYER NEURAL NETWORKSen
dc.subjectMULTILAYERSen
dc.subjectNEURODEGENERATIVE DISEASESen
dc.subjectNONINVASIVE MEDICAL PROCEDURESen
dc.subjectSIGNAL ANALYSISen
dc.subjectAUTISM SPECTRUM DISORDERSen
dc.subjectDEEP LEARNINGen
dc.subjectELECTRORETINOGRAMSen
dc.subjectGATED MLPen
dc.subjectMULTILAYERS PERCEPTRONSen
dc.subjectRECORDINGen
dc.subjectRETINAen
dc.subjectTRANSFORMERen
dc.subjectWAVEFORMSen
dc.subjectWAVELET-ANALYSISen
dc.subjectWAVELET ANALYSISen
dc.titleAttention to the Electroretinogram: Gated Multilayer Perceptron for ASD Classificationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1109/ACCESS.2024.3386638-
dc.identifier.scopus85190174297-
local.contributor.employeeKulyabin M., Friedrich-Alexander-Universität Erlangen-Nürnberg, Pattern Recognition Lab, Department of Computer Science, Erlangen, 91058, Germanyen
local.contributor.employeeConstable P.A., Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, 5042, SA, Australiaen
local.contributor.employeeZhdanov A., Ural Federal University Named after the First President of Russia B. N. Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeLee I.O., University College London, Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, United Kingdomen
local.contributor.employeeThompson D.A., Great Ormond Street Hospital for Children NHS Trust, The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, London, WC1N 1LE, United Kingdom, University College London, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, United Kingdomen
local.contributor.employeeMaier A., Friedrich-Alexander-Universität Erlangen-Nürnberg, Pattern Recognition Lab, Department of Computer Science, Erlangen, 91058, Germanyen
local.description.firstpage52352
local.description.lastpage52362
local.volume12-
dc.identifier.wos001204918500001-
local.contributor.departmentFriedrich-Alexander-Universität Erlangen-Nürnberg, Pattern Recognition Lab, Department of Computer Science, Erlangen, 91058, Germanyen
local.contributor.departmentCaring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, 5042, SA, Australiaen
local.contributor.departmentUral Federal University Named after the First President of Russia B. N. Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentUniversity College London, Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, United Kingdomen
local.contributor.departmentGreat Ormond Street Hospital for Children NHS Trust, The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, London, WC1N 1LE, United Kingdomen
local.contributor.departmentUniversity College London, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, United Kingdomen
local.identifier.pure56690325-
local.identifier.eid2-s2.0-85190174297-
local.identifier.wosWOS:001204918500001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85190174297.pdf4,37 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.