Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/141543
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Kulyabin, M. | en |
dc.contributor.author | Constable, P. A. | en |
dc.contributor.author | Zhdanov, A. | en |
dc.contributor.author | Lee, I. O. | en |
dc.contributor.author | Thompson, D. A. | en |
dc.contributor.author | Maier, A. | en |
dc.date.accessioned | 2025-02-25T10:48:58Z | - |
dc.date.available | 2025-02-25T10:48:58Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Kulyabin, M., Constable, P. A., Zhdanov, A., Lee, I. O., Thompson, D. A., & Maier, A. (2024). Attention to the Electroretinogram: Gated Multilayer Perceptron for ASD Classification. IEEE Access, 12, 52352-52362. https://doi.org/10.1109/ACCESS.2024.3386638 | apa_pure |
dc.identifier.issn | 2169-3536 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access; Gold Open Access | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85190174297&doi=10.1109%2fACCESS.2024.3386638&partnerID=40&md5=b7f4e5d724077ff5dd8330efdd3fb37e | 1 |
dc.identifier.other | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10495056.pdf | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/141543 | - |
dc.description.abstract | The electroretinogram (ERG) is a clinical test that records the retina's electrical response to a brief flash of light as a waveform signal. Analysis of the ERG signal offers a promising non-invasive method for studying different neurodevelopmental and neurodegenerative disorders. Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by poor communication, reduced reciprocal social interaction, and restricted and repetitive stereotyped behaviors that should be detected as early as possible to ensure timely and appropriate intervention to support the individual and their family. In this study, we applied gated Multilayer Perceptron (gMLP) for the light-adapted ERG waveform classification as an effective alternative to Transformers. This study presents the first application of gMLP for ASD classification, which employs basic multilayer perceptrons with fewer parameters than Transformers. We compared the performance of different time-series models on an ASD-Control dataset and found that the superiority of gMLP in classification accuracy was the best at 89.7% compared to alternative models and supports the use of gMLP in classification models based on ERG recordings involving case-control comparisons. © 2013 IEEE. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by-nc-nd | other |
dc.source | IEEE Access | 2 |
dc.source | IEEE Access | en |
dc.subject | ASD | en |
dc.subject | DEEP LEARNING | en |
dc.subject | ELECTRORETINOGRAM | en |
dc.subject | ERG | en |
dc.subject | GATED MLP | en |
dc.subject | TRANSFORMER | en |
dc.subject | WAVEFORM | en |
dc.subject | CLASSIFICATION (OF INFORMATION) | en |
dc.subject | DEEP LEARNING | en |
dc.subject | MULTILAYER NEURAL NETWORKS | en |
dc.subject | MULTILAYERS | en |
dc.subject | NEURODEGENERATIVE DISEASES | en |
dc.subject | NONINVASIVE MEDICAL PROCEDURES | en |
dc.subject | SIGNAL ANALYSIS | en |
dc.subject | AUTISM SPECTRUM DISORDERS | en |
dc.subject | DEEP LEARNING | en |
dc.subject | ELECTRORETINOGRAMS | en |
dc.subject | GATED MLP | en |
dc.subject | MULTILAYERS PERCEPTRONS | en |
dc.subject | RECORDING | en |
dc.subject | RETINA | en |
dc.subject | TRANSFORMER | en |
dc.subject | WAVEFORMS | en |
dc.subject | WAVELET-ANALYSIS | en |
dc.subject | WAVELET ANALYSIS | en |
dc.title | Attention to the Electroretinogram: Gated Multilayer Perceptron for ASD Classification | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1109/ACCESS.2024.3386638 | - |
dc.identifier.scopus | 85190174297 | - |
local.contributor.employee | Kulyabin M., Friedrich-Alexander-Universität Erlangen-Nürnberg, Pattern Recognition Lab, Department of Computer Science, Erlangen, 91058, Germany | en |
local.contributor.employee | Constable P.A., Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, 5042, SA, Australia | en |
local.contributor.employee | Zhdanov A., Ural Federal University Named after the First President of Russia B. N. Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Lee I.O., University College London, Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, United Kingdom | en |
local.contributor.employee | Thompson D.A., Great Ormond Street Hospital for Children NHS Trust, The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, London, WC1N 1LE, United Kingdom, University College London, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, United Kingdom | en |
local.contributor.employee | Maier A., Friedrich-Alexander-Universität Erlangen-Nürnberg, Pattern Recognition Lab, Department of Computer Science, Erlangen, 91058, Germany | en |
local.description.firstpage | 52352 | |
local.description.lastpage | 52362 | |
local.volume | 12 | - |
dc.identifier.wos | 001204918500001 | - |
local.contributor.department | Friedrich-Alexander-Universität Erlangen-Nürnberg, Pattern Recognition Lab, Department of Computer Science, Erlangen, 91058, Germany | en |
local.contributor.department | Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, 5042, SA, Australia | en |
local.contributor.department | Ural Federal University Named after the First President of Russia B. N. Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.department | University College London, Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, United Kingdom | en |
local.contributor.department | Great Ormond Street Hospital for Children NHS Trust, The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, London, WC1N 1LE, United Kingdom | en |
local.contributor.department | University College London, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, United Kingdom | en |
local.identifier.pure | 56690325 | - |
local.identifier.eid | 2-s2.0-85190174297 | - |
local.identifier.wos | WOS:001204918500001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85190174297.pdf | 4,37 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.