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ABSTRACT The electroretinogram (ERG) is a clinical test that records the retina’s electrical response to a
brief flash of light as a waveform signal. Analysis of the ERG signal offers a promising non-invasive method
for studying different neurodevelopmental and neurodegenerative disorders. Autism Spectrum Disorder
(ASD) is a neurodevelopmental condition characterized by poor communication, reduced reciprocal social
interaction, and restricted and/or repetitive stereotyped behaviors that should be detected as early as possible
to ensure timely and appropriate intervention to support the individual and their family. In this study,
we applied gated Multilayer Perceptron (gMLP) for the light-adapted ERG waveform classification as an
effective alternative to Transformers. In this first reported application of this model to ASD classification
which consisted of basic multilayer perceptrons, with fewer parameters than Transformers. We compared
the performance of different time-series models on an ASD-Control dataset and found that the superiority
of gMLP in classification accuracy was the best at 89.7% compared to alternative models and supports the
use of gMLP in classification models based on ERG recordings involving case-control comparisons.

INDEX TERMS ASD, Deep Learning, Electroretinogram, ERG, Gated MLP, Transformer, Waveform

I. INTRODUCTION
A. POTENTIAL FOR ERG DIAGNOSIS IN CNS DISORDERS

THE full-field electroretinogram (ERG) is the waveform
recorded from the eye under dark- or light-adapted (DA

or LA) conditions in response to a brief flash of light. Clin-
ically, the ERG waveform can be used for the diagnosis of
conditions affecting the retina, such as inherited or acquired
diseases [1]. Because the retina is an extension of the central
nervous system (CNS), and its function is readily accessible
through the ERG, several studies have investigated changes
in the ERG waveform in conditions affecting the CNS in
human and animal studies [2]. For example, the analysis of
the ERG waveform to identify potential biomarkers has also
been proposed for the early detection of Attention Deficit
Hyperactivity Disorder (ADHD) [3], bipolar disorder [4] and
using a mouse model for Parkinson’s disease [5].

The shape of the ERG waveform depends on the state of
retinal adaptation with the DA- and LA-ERG responses dom-
inated by rod and cone pathways, respectively [1], [6]. The
main excitatory neurotransmitter of the retina is glutamate,

which contributes to the main positive b-wave generated by
the bipolar cells [7]. The preceding negative a-wave is formed
by hyperpolarization of the photoreceptor outer segments
[8] that reduces glutamate release into the post rececptoral
synapse with bipolar and horizontal cells [9]. The horizontal
cells provide inhibition to cone photoreceptors using gamma-
aminobutyric acid (GABA) signaling that modulates the a-
wave’s amplitude [10]. Dopamine-driven responses from the
amacrine cells also contribute to the high-frequency oscil-
latory potentials visible as small ripples on the ascending
limb of the b-wave [11]. Given the contributions of these key
neurotransmitters and their role in CNS disorders, changes
in the ERG waveform have been associated with alterations
in these neurotransmitters [2], [12]. For example, reduced
dopamine in early Parkinson’s disease results in a reduced
b-wave and oscillatory potentials [13]. In autism spectrum
disorder (ASD) and ADHD, differences in the balance be-
tween glutamate may be responsible for the elevated b-waves
in ADHD compared to the reduced b-wave amplitudes re-
ported in ASD [14]. In schizophrenia, the reduced a- and
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b-wave wave amplitudes are thought to be due to increased
GABAergic inhibition by the horizontal cells [15] and may
help to distinguish schizophrenia from bipolar disorder [16].
Developing methods for the classification of ASD and poten-
tially other conditions affecting the CNS through the analysis
of the ERG could provide improved earlier diagnosis and
management of these conditions to improve patient outcomes
[17].

With respect to ASD, the search for a biomarker to detect
this condition has been extensive, with currently no clinical
diagnostic test able to reliably identify a child with ASD
[18]. The ERG may be a potential new test that, with more
extensive clinical trials, could provide a novel biomarker for
ASD. Early studies have identified reduced DA- and LA-
ERG responses in children with ASD [19], [20]. However,
in adult populations, the results have been mixed [21], [22]
with respect to the LA-ERG changes. There is some evidence
in small study populations that the ERG changes may dif-
fer between ADHD and ASD groups [14], [23]. Still, these
early findings require more extensive studies to replicate in
younger clinical populations. Whilst developments in this
field continue with the use of signal analysis of the ERG
using variable frequency complex demodulation [24] show-
ing potential to not only classify ASD but also to differen-
tiate between ASD and ADHD [25], [26]. Other methods
using aspects of Functional Data Analysis of the b-wave have
also recently been reported [27] that may provide additional
features that may contribute to the classification of retinal
disorders [28].

B. APPLICATION OF MACHINE LEARNING (ML) AND
ARTIFICIAL INTELLIGENCE TECHNIQUES AND THE ERG
The studies described in Table 1 have incorporated ML to
enhance the diagnosis of ophthalmic or neurological condi-
tions through the analysis of ERG recordings. Yapici et al.
[29] explored obesity’s correlation with ocular health, and
achieved 94.1% and 92.9% classification accuracy for obesity
with an artificial neural network based on discrete wavelet
transform analysis of the LA- and DA-ERG waveforms in
47 subjects. Lopez et al. [30] investigated multiple sclerosis,
using support vector machines (SVMs) to identify multifo-
cal ERG (mfERG) feature differences based on continuous
wavelet transform of the signal in 15 subjects. Zhdanov et al.
[31] applied ML for the classification of adults compared to
pediatric DA- and LA-ERGs with and without retinal disease
based on wavelet transforms to improve the classification
of the groups using classical time-domain and novel time-
frequency features. Glinton et al. [32] using DA- and LA-
ERGs time-domain features recorded from 597 cases with
ABCA4 retinopathy and with regression models developed
genotype-phenotype models to not only predict disease pro-
gression but also classify the phenotypes into three groups
with up to 91.8% accuracy. Gajendran et al. [33] addressed
early-stage glaucoma diagnosis in a mouse model based
on analysis of advanced features from the DA- and LA-
ERGs distributions using ML to identify early ganglion cell

loss. Manjur et al. [34] explored ERG-based ASD detec-
tion, achieving 86% accuracy, and emphasized the potential
for earlier diagnosis using decomposition of the LA-ERGs.
Kulyabin et al. [35] determined optimal wavelet-DL model
combinations for pediatric ERG signal analysis, providing
insights into selecting appropriate mother wavelets. Posada-
Quintero et al. [24] compared signal analytical methods, in-
cluding time-domain and time-frequency domain features de-
rived from the distributions for ASD classification, support-
ing the ERG waveform derived from a single flash strength
in the right eye as a potential practical clinical biomarker for
ASD. Manjur et al. [25] applied variable frequency complex
demodulation and ML for ASD and ADHD classification,
achieving 0.84 accuracy with gradient boosting. and more
recently achieved a 70% overall accuracy for differentiating
between ASD, ADHD and controsl [26]. Further studies may
explore sensitivity and specificity with controls meeting both
ASD and ADHD classifications [25]. Taken together, these
studies using different features of the ERG signal based on
full field and mfERG in human and mouse studies suggest
that ML coupled with ERG features and clinical parameters
will improve earlier diagnosis, prognosis, andmanagement of
conditions affecting the CNS.
Studies incorporating ML methods with the ERG wave-

form are increasing but still relatively uncommon, with neural
networks encountered in only three publications relating to
ASD and the ERG [24], [25], [35], signifying an interest
in adopting ML techniques [36], [37]. These observations
emphasize the substantial untapped potential offered by ML
methods for the comprehensive analysis of the ERG wave-
form signal to improve classification between groups and
potentially earlier identification of retinal disease processes
[24], [25], [34], [38]. The wider adoption of ML methods
may further improve the clinical utility of the ERG [39], [40]
and with further technological advances such as smartphone-
based devices could become more accessible [41].
Additionally, applying Deep Learning (DL) approaches

could potentially improve the accuracy of ERG signal classi-
fication of retinal and CNS-based disorders, thereby enhanc-
ing not only the quality of ASD detection in the early stages
and improving long-term outcomes for individuals with ASD
[42] but also related disorders where the ERG is atypical [2],
[39].
Moreover, in order to realize the full potential of the ERG

in the classification or earlier detection of CNS disorders,
the application of signal analysis using wavelets and variable
frequency complex demodulation has been applied recently in
studies involving individuals withASD andADHD [23], [25].
These preliminary studies in childhood have identified the
potential for identifying features extracted from signal analy-
sis to improve machine learning (ML) classification models.
However, one limitation in such studies is the heterogeneity
of the ASD population despite standardization of clinical
assessments such as the Autism Diagnostic Observational
schedule (ADOS) [43]. Heterogeneity in ASD may manifest
in the severity and co-occurrence of additional conditions
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TABLE 1. Comparative Table of Publications on the Application of Machine Learning and Artificial Intelligence Techniques for ERG

First author, year [reference] Diagnosed Disease Subjects / Signals Recording ML / AI Algorithm

López-Dorado, 2021 [30] Multiple Sclerosis 21 / Not Specified mfERG Support Vector Machine (SVM)
Yapici, 2021 [29] Obesity diseases 47 / Not Specified ERG DA and LA Artificial Neural Network (ANN)
Zhdanov, 2022 [31] Retinal Dystrophy Not Specified / 425 ERG DA and LA Decision Tree (DT)
Glinton, 2022 [32] ABCA4-related retinopathy 597 / Not Specified ERG DA and LA SVM
Gajendran, 2022 [33] Early-Stage Glaucoma 60 / 540 ERG DA and LA Feature Engineering, RFC*

Manjur, 2022 [34] Autism Spectrum Disorder (ASD) 143 / Not Specified ERG LA RFC, GB**, DT, SVM
Kulyabin, 2023 [35] Retinal Dystrophy Not Specified / 542 ERG DA and LA VGG, ResNet, DensNet, ResNext, ViT
Posada-Quintero,2023 [24] ASD 217 / Not Specified ERG LA RFC, GB, SVM
Manjur, 2023 [25] ASD 143 / Not Specified ERG LA GradBoost, XGBoost
Manjur, 2024 [26] ASD, ADHD*** 286 / Not Specified ERG LA RFC, XGBoost
* Random Forest Classifier
** Gradient Boosting
*** Attention Deficit Hyperactivity Disorder

such as ADHDwith phenotypic overlap [44]. ML approaches
may help to classify neurodevelopmental disorders based on
a combination of phenotypic and biological markers [45],
[46]. In addition, the ERG findings in ASD have not been
replicated in older age groups, suggesting that the findings
may not be fully generalizable to all age groups [22].

Our previous studies [35], [47] have shown the superior-
ity of Transformer over classical architectures in the time-
frequency domain with respect to ERG with the condition
that Transformer training requires a large dataset, which is
challenging to obtain due to field specificity in many cases.
One solution to this problem would be to apply an alternative
structure to a Transformer with less trainable parameters and
more efficiency for a reasonably shorter signal. Thus, we
propose using the Gated Multilayer Perceptron (gMLP) [48]
for ERG signal classification. In this study, we apply for
the first time using ERG waveform time-series analysis, the
gMLP architecture, and compare the performance of gMLP
with other architectures in the time-series domain.

II. DATA
Fig.1 shows an LA-ERG signal waveform of a control subject
used in this study. By analyzing the parameters of the ERG
waveform, such as the amplitude of the a- and b-waves (Va,
Vb) and their respective time to peaks (Ta, Tb), clinicians can
identify abnormalities that help diagnose a range of retinal
disorders [1]. Fig.2 illustrates a further series of representative
LA-ERG waveforms at four flash strengths: -0.367, 0.114,
0.799, and 1.204 (log cd .s.m−2), for an ASD and control
participant. The amplitude of the b-wave increases with flash
strength reaching a peak before falling and forming a plateau
phase that is described as the photopic hill [49]. Fig.2 shows
this with the b-wave amplitude being smaller at the highest
flash strength of 1.204 (logcd .s.m−2) and maximal at a lower
flash strength of 0.799 (log cd .s.m−2) that forms the "peak"
of the photopic hill in this instance.

Comparing the ASD and control waveforms, it is apparent
that the amplitude of the b-wave is reduced in the ASD
subject. Notable also is the absence of prominent oscillatory
potentials in the ASD waveforms. The oscillatory potentials

FIGURE 1. Light-adapted ERG waveform of a control individual. There are
two prominent peaks in the waveform. The a-wave is the first negative
deflection is mainly due to hyperpolarization of the photoreceptors, and
the following positive b-wave is shaped by bipolar, amacrine, and glial
cell currents. Small peaks are observed on the ascending limb of the
b-wave, which are termed the oscillatory potentials that have their origins
in the amacrine cells. Time domain features are indicated as Ta, Tb, Va,
and Vb, corresponding to the time to peak and amplitudes of the a- and
b-waves, respectively.

derive from amacrine cells [11] and are usually visible as
small "ripples" or peaks on the ascending limb of the b-wave
before the main peak and contribute to the high-frequency
components of the ERG. These differences have may be due
to a difference in the regulation of glutamate and/or dopamine
that contribute to the amplitude of the b-wave and oscillatory
potentials as described in Lee at al [14].

In this work, we re-analyzed the LA-ERG waveform
recordings from previously reported studies [14], [20], [23].
This dataset contained signals from 20 control and 30 ASD
individuals collected in two different locations: London (UK)
andAdelaide (Australia). Full-field LA-ERG recordingswere
performed on each eye (always right first), following the
guidelines of the ISCEV ERG standard [6]. A series of brief
flashes of different strengths were applied to the eyes on a
40 (cd .m−2) white background. Recordings were performed
with the RETeval (LKC Technologies, Gaithersburg, MD,
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(a) Control ERG signals. (b) ASD ERG signal.

FIGURE 2. Examples of ERG waveforms recorded from a control (a) and ASD (b) individual to flash strengths -0.367, 0.144 0.799, and 1.204 (log cd .s.m−2).
The prominent b-wave positive peak is reduced in the ASD waveforms, with less noticeable oscillatory potentials visible on the ascending limb of the
b-wave. Note the amplitude of the b-wave is maximal at the intermediate flash strength of 0.799 (log cd .s.m−2)and reduces as flash strength increases
with the 1.204 (log cd .s.m−2) strength.

FIGURE 3. Recordings were performed with the RETeval from each eye using a skin electrode with nine randomized flash strengths. 30 to 60 averages of
the ERG were recorded to generate a signal average that was then used for classification of groups using Deep Learning methods.

TABLE 2. Dataset distribution

ASD Control

Individuals
30 20

Signals

Flash Strength

1.204 58 59
1.114 60 51
0.949 56 51
0.799 56 57
0.602 58 56
0.398 60 55
0.114 53 50
-0.119 56 50
-0.367 52 53

Eye

Left 255 252
Right 254 230

Total 509 482

USA) with a custom nine-step randomized Troland-based
protocol with skin electrodes placed 2-3 mm below the lower
eyelid. Flashes delivered at 2 Hz were averaged from 30-
60 waveform traces per eye to generate the reported average
waveform signal that was used in the analysis. Waveforms
with artifacts such as blinks were automatically rejected from
the average if they fell within the upper or lower quartile of
the overall average. Two recordings were typically made in
each eye and included in the dataset for analysis. Fig.3 shows
the signal processing method. The dataset distribution of in-

cluded ERG waveform signals recorded from the participants
in each group and at each flash strength is shown in Table 2.
Signals from one individual appear only in one subset (fold)
for the cross-validation steps.

III. GATED MULTILAYER PERCEPTRON
The gMLP is a neural network architecture that aims to
process sequential data using a novel design centered around
Multi-Layer Perceptrons (MLPs) with gating mechanisms.
Unlike Transformer-based models, which rely heavily on
self-attention mechanisms, gMLP explores an alternative ap-
proach for sequence modeling: it simply consists of channel
projections and spatial projections with static parameteriza-
tion. It demonstrates high performance on time-series domain
tasks and uses fewer trainable parameters than Transformer
models in general. The main components of the structure are
the gMLP main block and the Spatial Gating Unit (SGU),
which are described below.

A. GMLP BLOCK
The MLP is a basic form of a neural network, consisting of
a simple series of fully-connected layers or perceptrons. The
overview of the gMLP model is shown in Figure 4. It consists
of a stack of L blocks, each with identical size and structure.
Each block L is defined as:

Z = σ(XU), Z̃ = s(Z), Y = Z̃V (1)

where X ∈ Rn×d is a token with sequence length n and
dimension d , and σ is an Activation function. U ∈ Rd×dffn

and V ∈ Rdffn×d define linear projections along the channel
dimension, Z ∈ Rn×dffn , and s(·) is a layer that captures spatial
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interactions and is defined as a spatial depth-wise convolu-
tion. Unlike Transformers, gMLP does not require position
embeddings because s(·) already contains this information
[48].

B. SPATIAL GATING UNIT
Layer s(·) should contain a contraction operation over the spa-
tial dimension to enable cross-token interactions that could be
performed with linear projection:

fW ,b(Z) = WZ + b (2)

where W ∈ Rn×n is independent of the input representations
matrix for which the size is the same as the sequence length n,
and b refers to token-specific biases. Layer s(·) is the output
of the linear gating:

s(Z) = Z ⊙ fW ,b(Z) (3)

where s(⊙) is an element-wise multiplication. For trainingW
is initialized as near-zero value and b as ones, consequently
fW ,b(Z) ≈ 1 and s(Z) ≈ Z . For effectiveness, Z is split into
two independent parts Z1,Z2 along the channel dimension for
the gating function and for the multiplicative bypass:

s(Z) = Z1 ⊙ fW ,b(Z2) (4)

For improvement of the stability of large models, the input is
normalized to fW ,b. This unit was referred to the SGU.
The Algorithm 1 appears similar to the attention mecha-

nism in Transformers. However, it is not identical. Here, the
weights stay the same during the inference, independent of the
input. Meanwhile, in the attention mechanism, the weights
change depending on the input, which can lead to better
performance during inference. On the other hand, this makes
transformers more challenging to train.

Algorithm 1 Work of the gMLP block.

gMLP Block(X,d,dffn)
Shortcut = X
X← Norm(X, axis = Channel)
U← Proj(X,dffn, axis = Channel)
Z← GELU(XU)
Z̃← Spatial Gating Unit(Z)
V← Proj(Z̃,d, axis = Channel)
return Z̃V + Shortcut

Spatial Gating Unit(Z)
Z1,Z2 ← Split(Z, axis = Channel)
Z2 ← Norm(Z2, axis = Channel)
n← Get Dimension(Z2, axis = Spatial)
Z2 ← Proj(Z2,n, axis = Spatial, init_bias = 1)
return Z1 ⊙ Z2

IV. EVALUATION
In this work, we compared multiple time-series DL mod-
els, allowing for a systematic assessment of their respective

FIGURE 4. Overview of the gMLP architecture. The model consists of a
stack of L blocks with identical structure and size. Each block consists of
channel projections before and after the Spatial Gating Unit (SGU).
Together with the activation function (GELU), they act as feedforward
layers.

performance characteristics and facilitating the selection of
the most accurate model for the classification problem in
the domain while advancing scientific understanding of their
applicability and limitations.
Bidirectional Long Short-Term Memory (BiLSTM) [50]

is a type of recurrent neural network (RNN) that can cap-
ture temporal dependencies in data. They are well-suited
for sequential data with long-range dependencies. Residual
Network (ResNet) [51] is a deep convolutional neural net-
work designed for image data, but it can also be adapted
for time series tasks. It uses skip connections to mitigate the
vanishing gradient problem [52] and allows for the training
of very deep networks. InceptionTime [53] is a time series
model inspired by Google’s Inception architecture. It uses
multiple parallel convolutional layers with different kernel
sizes to capture various temporal patterns at different scales.
OmniScale [54] is a model designed to handle a wide range of
time series tasks, from short to very long time series. It uses a
combination of dilated causal convolutions and self-attention
mechanisms to capture temporal dependencies efficiently.
A Time Series Transformer (TST) [55] is a transformer-
based architecture adapted for time series data. It utilizes
self-attention mechanisms to capture temporal dependencies
and global patterns effectively. Time Series in Transformers
(TSiT) [56] is another transformer-based model explicitly de-
signed for time series tasks. It incorporates additional compo-
nents like recurrence and autoregressive attention to capture
sequential patterns. PatchTST [56] combines the concepts of
patch-based processing with time series data. It divides the
time series into smaller patches and applies transformer-based
models to each patch.

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3386638

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Kulyabin et al.: Attention to the Electroretinogram: Gated Multilayer Perceptron for ASD Classification

FIGURE 5. Evaluation pipeline. To perform the subject-wise
cross-validation, all individuals from the dataset were randomly divided
into five groups (folds). On each iteration four folds (40 ASD/Control
individuals) were in the training subset, and one fold (10 ASD/Control
individuals) was in the test subset. Each cross-validation step was
repeated five times on the five folds. On each occasion within the training
subset, oversampling was applied to avoid unbalancing. In this way, all
models were trained, and classification metrics compared.

A. TRAINING

We performed a five-fold subject-wise cross-validation to
evaluate each model: we randomly divided all 50 subjects
on five folds, Fig.5. There were at least nine signals from
both eyes per subject. This separation was necessary to avoid
having signals from the same subject in different folds, as this
would have falsely increased the accuracy of the prediction.
Every time, four folds were used for training, and the last fold
was used for testing. The models were trained using the entire
dataset without dividing the ERG signals into flash strength
classes, as it would have resulted in a reduced training subset,
which is not suited for training computationally intensive
models. To solve the unbalanced problem on the training
subset, we applied oversampling by individual class and class
weights. Oversampling was performed as upsampling of the
data related to the minority class (control).

For all of the models, we used the CrossEntropyLossFlat
loss function so that we could pass in a weight parameter.
We used Adam as an optimizer with learning rates [0.0001,
0.001]. The validation metric was accuracy.

Since the objective was to reduce the number of parameters
and efficiency, in the current work, we used a comparable
TST gMLP "Tiny" version from the original study [48]: the
model dimension (dmodel) equaled 128, and the feed-forward
dimension (dffn) was 768. The depth of the model was set to
12. To reduce the number of training parameters but still com-
pete with TST, we reduced the model parameters to: dmodel
equal to 64, dffn equal to 512, and depth equal to 6 ("Nano").
We used GELU as an activation function. The models were
trained until convergence with a maximum learning rate of
0.0001 with a batch size of 32.

B. METRICS

For a complete understanding of the model performance,
several metrics were computed: Precision (P), Recall (R), and
F1 Score:

Precision =
TP

TP+ FP
, (5)

Recall =
TP

TP+ FN
, (6)

F1 Score =
2× Precision× Recall
Precision+ Recall

, (7)

where
• TP = True Positive,
• TN = True Negative,
• FP = False Positive,
• FN = False Negative.
As the test subsets were not balanced, we considered the

Balanced Accuracy (BA):

Balanced Accuracy =
Sensitivity+ Specificity

2
, (8)

where
Sensitivity =

TP
TP+ FN

, (9)

Specificity =
TN

TN + FP
. (10)

C. RESULTS
The metrics presented in Table 3 demonstrate the high per-
formance of the gMLP and transformer-based architecture
models compared with other models for classification on
this dataset. Fig.6a also shows the Receiver Operating Char-
acteristic curves (ROC) with corresponding Areas Under
the Curves (AUC) for the models tested. Notably, "Tiny"
gMLP demonstrated better performance within our con-
strained dataset than Transformers across most metrics. Fur-
thermore, the shorted version "Nano" also outperformed TST
and secured the second position across most metrics despite
having significantly fewer trainable parameters. For compari-
son, Fig.6b shows the ROC curves of gMLP and TSTmodels.
Specificity and Sensitivity, defined by the formulas 9 and 10,
were used to construct the ROC curves with the following
indicators: FPTST = 7, FNTST = 18; FPgMLPTiny = 7,
FNgMLPTiny = 12; FPgMLPNano = 11, FNgMLPNano = 10.
Table 3 shows the number of trainable parameters of

each tested model. TSiT has 86 million trainable parameters,
which is impractical for training on ERG signals. TST has
1.5 million parameters compared to 5.9 million for the "Tiny"
gMLP. However, the shortened version "Nano" has only 930
thousand and is the leader in terms of the ratio with the other
metrics.
The reason for these outcomes could be attributed to var-

ious factors. For instance, gMLP has better parameter ef-
ficiency compared to Transformers. Transformers typically
require a large amount of data to train their numerous param-
eters, including attention mechanisms and positional encod-
ings. On the other hand, gMLP relies mainly on MLP layers,
which generally have fewer parameters, making them less de-
pendent on large datasets for practical training. Additionally,
transformers may be susceptible to overfitting when dealing
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with smaller datasets due to excessive learning. In contrast,
gMLP’s architecture, which relies on MLP layers supported
by gating mechanisms, helps mitigate overfitting due to its
simple structure.

TABLE 3. Evaluation metrics of different DL models

Network BA P R F1 AUC Param.

BiLSTM 0.822 0.865 0.763 0.811 0.873 82K
ResNet 0.833 0.867 0.752 0.818 0.908 478K
PatchTST 0.844 0.881 0.795 0.836 0.912 4.3M
Inception 0.860 0.838 0.891 0.864 0.950 388K
OmniScale 0.865 0.905 0.795 0.855 0.937 252K
TSiT 0.870 0.866 0.903 0.884 0.920 86M
TST 0.879 0.915 0.867 0.885 0.952 1.5M

gMLP Nano 0.887 0.882 0.892 0.887 0.955 930K
gMLP Tiny 0.897 0.920 0.870 0.895 0.979 5.9M

(a) (b)

FIGURE 6. Receiver operating characteristic curves (ROC) for binary
classification of ERG signals with corresponding areas under curves (AUC)
for all tested models (a) and for the best three models with highest AUC
(b): gMLP "Tiny", gMLP "Nano", TST.

When the amplitude of the b-wave is plotted against flash
strength, the function is termed the "photopic hill" with the
peak dominated byOFF-retinal pathways and the later plateau
phase the ON-retinal pathways [57]. The metrics were com-
pared by performing an ablation analysis where triplets of
strength were used with gMLP Nano to evaluate any dif-
ferences in the range of flash strengths to the classification
model.We applied the same training procedure independently
for the three flash strength ranges. The test and training sub-
sets were consequently reduced by a factor of three. However,
in this way, we could compare the relative contribution of
each triplet of strengths to the overall classification. Table 4
shows the overall performance of the gMLP Nano using the
three triplet flash strengths ranges that corresponded to the
early (-0.367 to 0.114), mid (0.398 to 0.799), and later (0.949
to 1.204) portions of the photopic hill.

V. DISCUSSION
In this work, we have built on previous studies that have
used combinations of ML with ERG signal analysis [24]–
[26], [34] or time domain parameters of the DA- and LA-ERG
waveform [14], [20], [21], Here we investigated the com-
plete time series of the ERG waveform signal that provides

TABLE 4. Evaluation metrics of gMLP Nano with three flash strength
ranges.

Strength BA P R F1 AUC

0.949 & 1.114 & 1.204 0.856 0.800 0.933 0.861 0.965
0.398 & 0.602 & 0.799 0.851 0.811 0.901 0.865 0.901
-0.367 & -0.119 & 0.114 0.849 0.810 0.937 0.869 0.904

some advantages over previous studies by using DL models
that can automatically learn relevant features from the raw
time-series dataset. Time-series data of the ERG waveform
can contain complex and hierarchical patterns that may not
be evident through manual feature engineering. Analyzing
the entire signal allows these models to uncover complex
temporal relationships that may be missed when relying on
waveform peak parameters such as amplitude and time or
time-frequency analytical solutions.
There is interest in expanding the clinical potential of the

ERG as a biomarker for disorders affecting the CNS [3],
[58]. The application of ML to identify phenotype-genotype
correlations has been demonstrated in retinal disease [32],
and this may also be beneficial in complex disorders where
genotypic risk factors can be linked to a phenotype in other
inherited retinal diseases [59]. While previous studies have
utilized signal analysis of the ERG signal to extract salient
features for classification [34], this subsequent analysis relied
on features identified from the raw time series that may offer
an alternative and additional method in the quest for the
classification and identification of retinal and CNS disorders
based on retinal functional biomarkers [3], [15], [16], [32],
[60].
Previous studies using parameters from a Gaussian and

logistic growth function to model the photopic hill as defined
by Hamilton et al. [61] indicated a more likely loss of the
ON-pathway associated with the higher flash strengths. In
the ablation analysis, we found equivalent contributions of
the three selected triplet flash strength ranges - although the
higher flash strength series had a slightly superior overall
balanced accuracy in keeping with previous suggestions that
there is a more significant ON-pathway loss in ASD [19]–
[21]. The use of regions of the photopic hill has been ap-
plied to discriminating schizophrenia from bipolar and con-
trol groups previously [16] and in this analysis, selecting a
range of three strengths in the higher range provides similar
performance to all strengths (three high strengths AUC =
0.965 compared with all strengths AUC = 0.955 and slightly
lower BA = 0.856 compared with BA = 0.887) using gMLP
Nano. This may help select the minimal number of flash
strengths required in a test to classify ASD subjects accurately
in future studies and support the potential application of ERG
analysis in classifying ASD in this subject group.
For the analysis of the ERG signal to be validated, fur-

ther studies will need to be performed in which sex and
developmental age are matched between groups to minimize
heterogeneity between study populations [62]. Additional DL
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models using feature engineering techniques, such as distri-
butional analysis of features, may also be advantageous in
the future with larger and more complex clinical datasets
to support more robust classification models [63], [64]. The
ERG may form part of the classification of biotypes [65] or
transdiagnostic endophenotypes [66] that could provide im-
proved stratification of neurodevelopmental conditions [46]
in conjunction with genotypic and phenotypic data [67].

The use of gMLP provides a powerful method to explore
further and refine the diagnostic potential of the ERG sig-
nal in CNS disorders such as ASD. This may help with
improved earlier interventions and better outcomes for in-
dividuals with a diagnosis of ASD [17], [42]. However, the
current limitations with respect to ASD diagnosis, based on
ERG recordings, is that, typically, children will be diagnosed
before the age of 5 years with early indications of language
delay, lack of declarative gestures, and eye contact commonly
observed before a formal diagnosis [62]. In addition, ASD
may present in combination with co-occurring developmental
conditions such as ADHD, and as such, the specificity of the
classification would need to be further evaluated in children
with ASD plus an additional co-occurring neurodevelopmen-
tal condition(s) [68]. Reducing the cost and increasing the
accessibility to recording the ERG in clinical populationsmay
also be improved in the future with technological develop-
ments, including smartphone-based devices that can record
and perform sophisticated analyses of the waveform [41].
Thus, further studies are required in younger cohorts with a
wide spectrum of neurodevelopmental conditions to establish
the LA-ERG as a specific biomarker for ASD. However, these
early findings further support the use of ML in the potential
classification of neurodevelopmental conditions [36], [37]
and with larger datasets in clinical populations, there is the
potential for the ERG to assist with triaging children that may
require further clinical assessments or to monitor therapeutic
interventions targeting the CNS in neurodevelopmental dis-
orders.

VI. ETHICS
Clinical recordingswere approved by local institutional ethics
committees and were in accordance with the Declaration of
Helsinki.

VII. CONCLUSIONS
gMLP is a novel architecture with the strengths of traditional
MLP and challenges some aspects of Transformers. Our
findings have demonstrated comparability to Transformers in
the ERG time-series domain. gMLP has a reasonably simple
structure while offering the ability to process long-range de-
pendencies in sequential data: gMLP "Tiny" showed the high-
est balanced accuracy of 0.89 on the dataset and performed
better than or equivalent to other time-series models. The
next best was the "Nano" version, with far fewer parameters
with the training process requiring a manageable number of
signals. Therefore, its application to the ERG waveform is
promising where clinical populations may be rare, such as in

inherited retinal diseases and heterogeneic neurodevelopmen-
tal disorders. The analysis of the ERG waveform as a poten-
tial biomarker in conjunction with the gMLP could further
improve the accuracy of ASD detection. The application of
gMLP may also contribute to the field of ERG analysis in
human and animal studies [2] and as illustrated in this study
able to provide a robust method for detecting ASDwithin this
clinical population.
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