Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/141536
Название: | Chaotic opposition learning with mirror reflection and worst individual disturbance grey wolf optimizer for continuous global numerical optimization |
Авторы: | Adegboye, O. R. Feda, A. K. Ojekemi, O. S. Agyekum, E. B. Hussien, A. G. Kamel, S. |
Дата публикации: | 2024 |
Издатель: | Nature Research |
Библиографическое описание: | Adegboye, O. R., Feda, A. K., Ojekemi, O. S., Agyekum, E. B., Hussien, A. G., & Kamel, S. (2024). Chaotic opposition learning with mirror reflection and worst individual disturbance grey wolf optimizer for continuous global numerical optimization. Scientific Reports, 14(1), [4660]. https://doi.org/10.1038/s41598-024-55040-6 |
Аннотация: | The effective meta-heuristic technique known as the grey wolf optimizer (GWO) has shown its proficiency. However, due to its reliance on the alpha wolf for guiding the position updates of search agents, the risk of being trapped in a local optimal solution is notable. Furthermore, during stagnation, the convergence of other search wolves towards this alpha wolf results in a lack of diversity within the population. Hence, this research introduces an enhanced version of the GWO algorithm designed to tackle numerical optimization challenges. The enhanced GWO incorporates innovative approaches such as Chaotic Opposition Learning (COL), Mirror Reflection Strategy (MRS), and Worst Individual Disturbance (WID), and it’s called CMWGWO. MRS, in particular, empowers certain wolves to extend their exploration range, thus enhancing the global search capability. By employing COL, diversification is intensified, leading to reduced solution stagnation, improved search precision, and an overall boost in accuracy. The integration of WID fosters more effective information exchange between the least and most successful wolves, facilitating a successful exit from local optima and significantly enhancing exploration potential. To validate the superiority of CMWGWO, a comprehensive evaluation is conducted. A wide array of 23 benchmark functions, spanning dimensions from 30 to 500, ten CEC19 functions, and three engineering problems are used for experimentation. The empirical findings vividly demonstrate that CMWGWO surpasses the original GWO in terms of convergence accuracy and robust optimization capabilities. © The Author(s) 2024. |
Ключевые слова: | ALGORITHM ALPHA WOLF ARTICLE BENCHMARKING CANIS LUPUS ELECTRIC POTENTIAL LEARNING METAHEURISTICS MIRROR WOLF |
URI: | http://elar.urfu.ru/handle/10995/141536 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Идентификатор SCOPUS: | 85186187719 |
Идентификатор WOS: | 001177429500044 |
Идентификатор PURE: | 53806553 |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-024-55040-6 |
Сведения о поддержке: | Linköpings Universitet, LiU; Centrum för Industriell Informationsteknologi, Linköpings Universitet, CENIIT, LiU |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85186187719.pdf | 12,08 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.