Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/141536
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Adegboye, O. R. | en |
dc.contributor.author | Feda, A. K. | en |
dc.contributor.author | Ojekemi, O. S. | en |
dc.contributor.author | Agyekum, E. B. | en |
dc.contributor.author | Hussien, A. G. | en |
dc.contributor.author | Kamel, S. | en |
dc.date.accessioned | 2025-02-25T10:47:19Z | - |
dc.date.available | 2025-02-25T10:47:19Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Adegboye, O. R., Feda, A. K., Ojekemi, O. S., Agyekum, E. B., Hussien, A. G., & Kamel, S. (2024). Chaotic opposition learning with mirror reflection and worst individual disturbance grey wolf optimizer for continuous global numerical optimization. Scientific Reports, 14(1), [4660]. https://doi.org/10.1038/s41598-024-55040-6 | apa_pure |
dc.identifier.issn | 2045-2322 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access; Gold Open Access | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186187719&doi=10.1038%2fs41598-024-55040-6&partnerID=40&md5=db780ce7b8854a8f53a83a698405c094 | 1 |
dc.identifier.other | https://www.nature.com/articles/s41598-024-55040-6.pdf | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/141536 | - |
dc.description.abstract | The effective meta-heuristic technique known as the grey wolf optimizer (GWO) has shown its proficiency. However, due to its reliance on the alpha wolf for guiding the position updates of search agents, the risk of being trapped in a local optimal solution is notable. Furthermore, during stagnation, the convergence of other search wolves towards this alpha wolf results in a lack of diversity within the population. Hence, this research introduces an enhanced version of the GWO algorithm designed to tackle numerical optimization challenges. The enhanced GWO incorporates innovative approaches such as Chaotic Opposition Learning (COL), Mirror Reflection Strategy (MRS), and Worst Individual Disturbance (WID), and it’s called CMWGWO. MRS, in particular, empowers certain wolves to extend their exploration range, thus enhancing the global search capability. By employing COL, diversification is intensified, leading to reduced solution stagnation, improved search precision, and an overall boost in accuracy. The integration of WID fosters more effective information exchange between the least and most successful wolves, facilitating a successful exit from local optima and significantly enhancing exploration potential. To validate the superiority of CMWGWO, a comprehensive evaluation is conducted. A wide array of 23 benchmark functions, spanning dimensions from 30 to 500, ten CEC19 functions, and three engineering problems are used for experimentation. The empirical findings vividly demonstrate that CMWGWO surpasses the original GWO in terms of convergence accuracy and robust optimization capabilities. © The Author(s) 2024. | en |
dc.description.sponsorship | Linköpings Universitet, LiU; Centrum för Industriell Informationsteknologi, Linköpings Universitet, CENIIT, LiU | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Nature Research | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by | other |
dc.source | Scientific Reports | 2 |
dc.source | Scientific Reports | en |
dc.subject | ALGORITHM | en |
dc.subject | ALPHA WOLF | en |
dc.subject | ARTICLE | en |
dc.subject | BENCHMARKING | en |
dc.subject | CANIS LUPUS | en |
dc.subject | ELECTRIC POTENTIAL | en |
dc.subject | LEARNING | en |
dc.subject | METAHEURISTICS | en |
dc.subject | MIRROR | en |
dc.subject | WOLF | en |
dc.title | Chaotic opposition learning with mirror reflection and worst individual disturbance grey wolf optimizer for continuous global numerical optimization | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1038/s41598-024-55040-6 | - |
dc.identifier.scopus | 85186187719 | - |
local.contributor.employee | Adegboye O.R., Management Information Systems, University of Mediterranean Karpasia, Mersin-10, Turkey | en |
local.contributor.employee | Feda A.K., Management Information System Department, European University of Lefke, Mersin-10, Turkey | en |
local.contributor.employee | Ojekemi O.S., Engineering Management, University of Mediterranean Karpasia, Mersin-10, Turkey | en |
local.contributor.employee | Agyekum E.B., Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, 19 Mira Street, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Hussien A.G., Department of Computer and Information Science, Linköping University, Linköping, Sweden, Faculty of Science, Fayoum University, El Faiyûm, Egypt, Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan, MEU Research Unit, Middle East University, Amman, 11831, Jordan | en |
local.contributor.employee | Kamel S., Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, 81542, Egypt | en |
local.issue | 1 | - |
local.volume | 14 | - |
dc.identifier.wos | 001177429500044 | - |
local.contributor.department | Management Information Systems, University of Mediterranean Karpasia, Mersin-10, Turkey | en |
local.contributor.department | Management Information System Department, European University of Lefke, Mersin-10, Turkey | en |
local.contributor.department | Engineering Management, University of Mediterranean Karpasia, Mersin-10, Turkey | en |
local.contributor.department | Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, 19 Mira Street, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.department | Department of Computer and Information Science, Linköping University, Linköping, Sweden | en |
local.contributor.department | Faculty of Science, Fayoum University, El Faiyûm, Egypt | en |
local.contributor.department | Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan | en |
local.contributor.department | MEU Research Unit, Middle East University, Amman, 11831, Jordan | en |
local.contributor.department | Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, 81542, Egypt | en |
local.identifier.pure | 53806553 | - |
local.description.order | 4660 | |
local.identifier.eid | 2-s2.0-85186187719 | - |
local.identifier.wos | WOS:001177429500044 | - |
local.identifier.pmid | 38409189 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85186187719.pdf | 12,08 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.