Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141536
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAdegboye, O. R.en
dc.contributor.authorFeda, A. K.en
dc.contributor.authorOjekemi, O. S.en
dc.contributor.authorAgyekum, E. B.en
dc.contributor.authorHussien, A. G.en
dc.contributor.authorKamel, S.en
dc.date.accessioned2025-02-25T10:47:19Z-
dc.date.available2025-02-25T10:47:19Z-
dc.date.issued2024-
dc.identifier.citationAdegboye, O. R., Feda, A. K., Ojekemi, O. S., Agyekum, E. B., Hussien, A. G., & Kamel, S. (2024). Chaotic opposition learning with mirror reflection and worst individual disturbance grey wolf optimizer for continuous global numerical optimization. Scientific Reports, 14(1), [4660]. https://doi.org/10.1038/s41598-024-55040-6apa_pure
dc.identifier.issn2045-2322-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85186187719&doi=10.1038%2fs41598-024-55040-6&partnerID=40&md5=db780ce7b8854a8f53a83a698405c0941
dc.identifier.otherhttps://www.nature.com/articles/s41598-024-55040-6.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141536-
dc.description.abstractThe effective meta-heuristic technique known as the grey wolf optimizer (GWO) has shown its proficiency. However, due to its reliance on the alpha wolf for guiding the position updates of search agents, the risk of being trapped in a local optimal solution is notable. Furthermore, during stagnation, the convergence of other search wolves towards this alpha wolf results in a lack of diversity within the population. Hence, this research introduces an enhanced version of the GWO algorithm designed to tackle numerical optimization challenges. The enhanced GWO incorporates innovative approaches such as Chaotic Opposition Learning (COL), Mirror Reflection Strategy (MRS), and Worst Individual Disturbance (WID), and it’s called CMWGWO. MRS, in particular, empowers certain wolves to extend their exploration range, thus enhancing the global search capability. By employing COL, diversification is intensified, leading to reduced solution stagnation, improved search precision, and an overall boost in accuracy. The integration of WID fosters more effective information exchange between the least and most successful wolves, facilitating a successful exit from local optima and significantly enhancing exploration potential. To validate the superiority of CMWGWO, a comprehensive evaluation is conducted. A wide array of 23 benchmark functions, spanning dimensions from 30 to 500, ten CEC19 functions, and three engineering problems are used for experimentation. The empirical findings vividly demonstrate that CMWGWO surpasses the original GWO in terms of convergence accuracy and robust optimization capabilities. © The Author(s) 2024.en
dc.description.sponsorshipLinköpings Universitet, LiU; Centrum för Industriell Informationsteknologi, Linköpings Universitet, CENIIT, LiUen
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherNature Researchen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceScientific Reports2
dc.sourceScientific Reportsen
dc.subjectALGORITHMen
dc.subjectALPHA WOLFen
dc.subjectARTICLEen
dc.subjectBENCHMARKINGen
dc.subjectCANIS LUPUSen
dc.subjectELECTRIC POTENTIALen
dc.subjectLEARNINGen
dc.subjectMETAHEURISTICSen
dc.subjectMIRRORen
dc.subjectWOLFen
dc.titleChaotic opposition learning with mirror reflection and worst individual disturbance grey wolf optimizer for continuous global numerical optimizationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1038/s41598-024-55040-6-
dc.identifier.scopus85186187719-
local.contributor.employeeAdegboye O.R., Management Information Systems, University of Mediterranean Karpasia, Mersin-10, Turkeyen
local.contributor.employeeFeda A.K., Management Information System Department, European University of Lefke, Mersin-10, Turkeyen
local.contributor.employeeOjekemi O.S., Engineering Management, University of Mediterranean Karpasia, Mersin-10, Turkeyen
local.contributor.employeeAgyekum E.B., Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, 19 Mira Street, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeHussien A.G., Department of Computer and Information Science, Linköping University, Linköping, Sweden, Faculty of Science, Fayoum University, El Faiyûm, Egypt, Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan, MEU Research Unit, Middle East University, Amman, 11831, Jordanen
local.contributor.employeeKamel S., Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, 81542, Egypten
local.issue1-
local.volume14-
dc.identifier.wos001177429500044-
local.contributor.departmentManagement Information Systems, University of Mediterranean Karpasia, Mersin-10, Turkeyen
local.contributor.departmentManagement Information System Department, European University of Lefke, Mersin-10, Turkeyen
local.contributor.departmentEngineering Management, University of Mediterranean Karpasia, Mersin-10, Turkeyen
local.contributor.departmentDepartment of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, 19 Mira Street, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Computer and Information Science, Linköping University, Linköping, Swedenen
local.contributor.departmentFaculty of Science, Fayoum University, El Faiyûm, Egypten
local.contributor.departmentApplied Science Research Center, Applied Science Private University, Amman, 11931, Jordanen
local.contributor.departmentMEU Research Unit, Middle East University, Amman, 11831, Jordanen
local.contributor.departmentElectrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, 81542, Egypten
local.identifier.pure53806553-
local.description.order4660
local.identifier.eid2-s2.0-85186187719-
local.identifier.wosWOS:001177429500044-
local.identifier.pmid38409189-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85186187719.pdf12,08 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.