Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/141530
Название: | PermDroid a framework developed using proposed feature selection approach and machine learning techniques for Android malware detection |
Авторы: | Mahindru, A. Arora, H. Kumar, A. Gupta, S. K. Mahajan, S. Kadry, S. Kim, J. |
Дата публикации: | 2024 |
Издатель: | Nature Research |
Библиографическое описание: | Mahindru, A., Arora, H., Kumar, A., Gupta, S. K., Mahajan, S., Kadry, S., & Kim, J. (2024). PermDroid a framework developed using proposed feature selection approach and machine learning techniques for Android malware detection. Scientific Reports, 14(1), [10724]. https://doi.org/10.1038/s41598-024-60982-y |
Аннотация: | The challenge of developing an Android malware detection framework that can identify malware in real-world apps is difficult for academicians and researchers. The vulnerability lies in the permission model of Android. Therefore, it has attracted the attention of various researchers to develop an Android malware detection model using permission or a set of permissions. Academicians and researchers have used all extracted features in previous studies, resulting in overburdening while creating malware detection models. But, the effectiveness of the machine learning model depends on the relevant features, which help in reducing the value of misclassification errors and have excellent discriminative power. A feature selection framework is proposed in this research paper that helps in selecting the relevant features. In the first stage of the proposed framework, t-test, and univariate logistic regression are implemented on our collected feature data set to classify their capacity for detecting malware. Multivariate linear regression stepwise forward selection and correlation analysis are implemented in the second stage to evaluate the correctness of the features selected in the first stage. Furthermore, the resulting features are used as input in the development of malware detection models using three ensemble methods and a neural network with six different machine-learning algorithms. The developed models’ performance is compared using two performance parameters: F-measure and Accuracy. The experiment is performed by using half a million different Android apps. The empirical findings reveal that malware detection model developed using features selected by implementing proposed feature selection framework achieved higher detection rate as compared to the model developed using all extracted features data set. Further, when compared to previously developed frameworks or methodologies, the experimental results indicates that model developed in this study achieved an accuracy of 98.8%. © The Author(s) 2024. |
Ключевые слова: | ANDROID APPS API CALLS DEEP LEARNING FEATURE SELECTION INTRUSION DETECTION NEURAL NETWORK PERMISSIONS MODEL ARTICLE CORRELATION ANALYSIS DEEP LEARNING DIAGNOSIS FEATURE SELECTION HUMAN LEARNING ALGORITHM LINEAR REGRESSION ANALYSIS LOGISTIC REGRESSION ANALYSIS MACHINE LEARNING MALWARE NERVE CELL NETWORK |
URI: | http://elar.urfu.ru/handle/10995/141530 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Идентификатор SCOPUS: | 85192919077 |
Идентификатор WOS: | 001218726300053 |
Идентификатор PURE: | 57310793 |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-024-60982-y |
Сведения о поддержке: | Maryland Society of Surveyors, MSS; Ministry of Trade, Industry and Energy, MOTIE, (20022899); Ministry of Trade, Industry and Energy, MOTIE This work was partly supported by the Technology Innovation Program funded by the Ministry of Trade, Industry & Energy (MOTIE) (No.20022899) and by the Technology Development Program of MSS (No.S3033853). |
Карточка проекта РНФ: | Takin Shimi Sepanta Industries Co The authors are grateful to acknowledge the Takin Shimi Sepanta Industries Co, Ilam, Iran. |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85192919077.pdf | 12,8 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.