Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141530
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMahindru, A.en
dc.contributor.authorArora, H.en
dc.contributor.authorKumar, A.en
dc.contributor.authorGupta, S. K.en
dc.contributor.authorMahajan, S.en
dc.contributor.authorKadry, S.en
dc.contributor.authorKim, J.en
dc.date.accessioned2025-02-25T10:47:19Z-
dc.date.available2025-02-25T10:47:19Z-
dc.date.issued2024-
dc.identifier.citationMahindru, A., Arora, H., Kumar, A., Gupta, S. K., Mahajan, S., Kadry, S., & Kim, J. (2024). PermDroid a framework developed using proposed feature selection approach and machine learning techniques for Android malware detection. Scientific Reports, 14(1), [10724]. https://doi.org/10.1038/s41598-024-60982-yapa_pure
dc.identifier.issn2045-2322-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85192919077&doi=10.1038%2fs41598-024-60982-y&partnerID=40&md5=492674b690390e82a5b30925d925447a1
dc.identifier.otherhttps://www.nature.com/articles/s41598-024-60982-y.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141530-
dc.description.abstractThe challenge of developing an Android malware detection framework that can identify malware in real-world apps is difficult for academicians and researchers. The vulnerability lies in the permission model of Android. Therefore, it has attracted the attention of various researchers to develop an Android malware detection model using permission or a set of permissions. Academicians and researchers have used all extracted features in previous studies, resulting in overburdening while creating malware detection models. But, the effectiveness of the machine learning model depends on the relevant features, which help in reducing the value of misclassification errors and have excellent discriminative power. A feature selection framework is proposed in this research paper that helps in selecting the relevant features. In the first stage of the proposed framework, t-test, and univariate logistic regression are implemented on our collected feature data set to classify their capacity for detecting malware. Multivariate linear regression stepwise forward selection and correlation analysis are implemented in the second stage to evaluate the correctness of the features selected in the first stage. Furthermore, the resulting features are used as input in the development of malware detection models using three ensemble methods and a neural network with six different machine-learning algorithms. The developed models’ performance is compared using two performance parameters: F-measure and Accuracy. The experiment is performed by using half a million different Android apps. The empirical findings reveal that malware detection model developed using features selected by implementing proposed feature selection framework achieved higher detection rate as compared to the model developed using all extracted features data set. Further, when compared to previously developed frameworks or methodologies, the experimental results indicates that model developed in this study achieved an accuracy of 98.8%. © The Author(s) 2024.en
dc.description.sponsorshipMaryland Society of Surveyors, MSS; Ministry of Trade, Industry and Energy, MOTIE, (20022899); Ministry of Trade, Industry and Energy, MOTIEen
dc.description.sponsorshipThis work was partly supported by the Technology Innovation Program funded by the Ministry of Trade, Industry & Energy (MOTIE) (No.20022899) and by the Technology Development Program of MSS (No.S3033853).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherNature Researchen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceScientific Reports2
dc.sourceScientific Reportsen
dc.subjectANDROID APPSen
dc.subjectAPI CALLSen
dc.subjectDEEP LEARNINGen
dc.subjectFEATURE SELECTIONen
dc.subjectINTRUSION DETECTIONen
dc.subjectNEURAL NETWORKen
dc.subjectPERMISSIONS MODELen
dc.subjectARTICLEen
dc.subjectCORRELATION ANALYSISen
dc.subjectDEEP LEARNINGen
dc.subjectDIAGNOSISen
dc.subjectFEATURE SELECTIONen
dc.subjectHUMANen
dc.subjectLEARNING ALGORITHMen
dc.subjectLINEAR REGRESSION ANALYSISen
dc.subjectLOGISTIC REGRESSION ANALYSISen
dc.subjectMACHINE LEARNINGen
dc.subjectMALWAREen
dc.subjectNERVE CELL NETWORKen
dc.titlePermDroid a framework developed using proposed feature selection approach and machine learning techniques for Android malware detectionen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1038/s41598-024-60982-y-
dc.identifier.scopus85192919077-
local.contributor.employeeMahindru A., Department of Computer Science and applications, D.A.V. University, Sarmastpur, Jalandhar, 144012, Indiaen
local.contributor.employeeArora H., Department of Mathematics, Guru Nanak Dev University, Amritsar, Indiaen
local.contributor.employeeKumar A., Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeGupta S.K., Department of Electronics and Communication Engineering, Central University of Jammu, UT of J&K, Jammu, 181143, India, School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, UT of J&K, Katra, 182320, Indiaen
local.contributor.employeeMahajan S., Department of Applied Data Science, Noroff University College, Kristiansand, Norwayen
local.contributor.employeeKadry S., Department of Applied Data Science, Noroff University College, Kristiansand, Norway, Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, 346, United Arab Emirates, MEU Research Unit, Middle East University, Amman, 11831, Jordan, Applied Science Research Center, Applied Science Private University, Amman, Jordanen
local.contributor.employeeKim J., Department of Software, Department of Computer Science and Engineering, Kongju National University, Cheonan, 31080, South Koreaen
local.issue1-
local.volume14-
dc.identifier.wos001218726300053-
local.contributor.departmentDepartment of Computer Science and applications, D.A.V. University, Sarmastpur, Jalandhar, 144012, Indiaen
local.contributor.departmentDepartment of Mathematics, Guru Nanak Dev University, Amritsar, Indiaen
local.contributor.departmentDepartment of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Electronics and Communication Engineering, Central University of Jammu, UT of J&K, Jammu, 181143, Indiaen
local.contributor.departmentSchool of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, UT of J&K, Katra, 182320, Indiaen
local.contributor.departmentDepartment of Applied Data Science, Noroff University College, Kristiansand, Norwayen
local.contributor.departmentArtificial Intelligence Research Center (AIRC), Ajman University, Ajman, 346, United Arab Emiratesen
local.contributor.departmentMEU Research Unit, Middle East University, Amman, 11831, Jordanen
local.contributor.departmentApplied Science Research Center, Applied Science Private University, Amman, Jordanen
local.contributor.departmentDepartment of Software, Department of Computer Science and Engineering, Kongju National University, Cheonan, 31080, South Koreaen
local.identifier.pure57310793-
local.description.order10724
local.identifier.eid2-s2.0-85192919077-
local.fund.rsfTakin Shimi Sepanta Industries Co
local.fund.rsfThe authors are grateful to acknowledge the Takin Shimi Sepanta Industries Co, Ilam, Iran.
local.identifier.wosWOS:001218726300053-
local.identifier.pmid38730228-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85192919077.pdf12,8 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.