Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/132592
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMllstein, G. N.en
dc.contributor.authorTretyakov, M. V.en
dc.date.accessioned2024-04-24T12:38:25Z-
dc.date.available2024-04-24T12:38:25Z-
dc.date.issued2009-
dc.identifier.citationMilstein, G. N., & Tretyakov, M. V. (2009b). Practical variance reduction via regression for simulating diffusions. SIAM Journal on Numerical Analysis, 47(2), 887–910. doi:10.1137/060674661apa
dc.identifier.issn0036-1429-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://figshare.com/articles/journal_contribution/Practical_Variance_Reduction_via_Regression_for_Simulating_Diffusions/10088204/1/files/18188711.pdfpdf
dc.identifier.other1duble
dc.identifier.urihttp://elar.urfu.ru/handle/10995/132592-
dc.description.abstractThe well-known variance reduction methods-the method of importance sampling and the method of control variates-can be exploited if an approximation of the required solution is known. Here we employ conditional probabilistic representations of solutions together with the regression method to obtain sufficiently inexpensive (although rather rough) estimates of the solution and its derivatives by using the single auxiliary set of approximate trajectories starting from the initial position. These estimates can effectively be used for significant reduction of variance and further accurate evaluation of the required solution. The developed approach is supported by numerical experiments. © 2009 Society for Industrial and Applied Mathematics.en
dc.description.sponsorshipEngineering and Physical Sciences Research Council, EPSRC: EP/D049792/1en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSociety for Industrial & Applied Mathematics (SIAM)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rightsAll Open Access, Greenscopus
dc.sourceSIAM Journal on Numerical Analysis2
dc.sourceSIAM Journal on Numerical Analysisen
dc.subjectMONTE CARLO TECHNIQUEen
dc.subjectNUMERICAL INTEGRATION OF STOCHASTIC DIFFERENTIAL EQUATIONSen
dc.subjectPROBABILISTIC REPRESENTATIONS OF SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONSen
dc.subjectREGRESSIONen
dc.subjectVARIANCE REDUCTION METHODSen
dc.subjectCOMPUTATIONAL FLUID DYNAMICSen
dc.subjectDIFFERENTIAL EQUATIONSen
dc.subjectIMAGE SEGMENTATIONen
dc.subjectMEASUREMENT THEORYen
dc.subjectNUMERICAL METHODSen
dc.subjectPARTIAL DIFFERENTIAL EQUATIONSen
dc.subjectRANDOM PROCESSESen
dc.subjectREGRESSION ANALYSISen
dc.subjectSTOCHASTIC CONTROL SYSTEMSen
dc.subjectTELECOMMUNICATION NETWORKSen
dc.subjectMONTE CARLO TECHNIQUEen
dc.subjectNUMERICAL INTEGRATION OF STOCHASTIC DIFFERENTIAL EQUATIONSen
dc.subjectPROBABILISTIC REPRESENTATIONS OF SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONSen
dc.subjectREGRESSIONen
dc.subjectVARIANCE REDUCTION METHODSen
dc.subjectMONTE CARLO METHODSen
dc.titlePractical variance reduction via regression for simulating diffusionsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.doi10.1137/060674661-
dc.identifier.scopus60049083387-
local.contributor.employeeMllstein, G.N., Department of Mathematics, Ural State University, Lenin Str. 51, 620083 Ekaterinburg, Russian Federationen
local.contributor.employeeTretyakov, M.V., Department of Mathematics, University of Leicester, Leicester LE1 7RH, United Kingdomen
local.description.firstpage887-
local.description.lastpage910-
local.issue2-
local.volume47-
dc.identifier.wos000265778900005-
local.contributor.departmentDepartment of Mathematics, Ural State University, Lenin Str. 51, 620083 Ekaterinburg, Russian Federationen
local.contributor.departmentDepartment of Mathematics, University of Leicester, Leicester LE1 7RH, United Kingdomen
local.identifier.pure38591643-
local.identifier.eid2-s2.0-60049083387-
local.identifier.wosWOS:000265778900005-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-60049083387.pdf301,24 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.