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Abstract. The well-known variance reduction methods—the method of importance sampling
and the method of control variates—can be exploited if an approximation of the required solution
is known. Here we employ conditional probabilistic representations of solutions together with the
regression method to obtain sufficiently inexpensive (although rather rough) estimates of the solution
and its derivatives by using the single auxiliary set of approximate trajectories starting from the initial
position. These estimates can effectively be used for significant reduction of variance and further
accurate evaluation of the required solution. The developed approach is supported by numerical
experiments.
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1. Introduction. The stochastic approach to solving problems of mathematical
physics is based on probabilistic representations of their solutions by making use of
the weak-sense numerical integration of stochastic differential equations (SDEs) and
the Monte Carlo (MC) technique. In this approach we have two main errors: the error
of SDE numerical integration and the MC error. The first error essentially depends
on the choice of a method of numerical integration, and the second one depends on
the choice of the probabilistic representation (it is understood that the first error for
a chosen method can be reduced by decreasing the step of discretization, and the
MC error for a selected probabilistic representation can be reduced by increasing the
number of independent trajectories). While the error of numerical integration is well
studied in the systematic theory of numerical integration of SDEs, which allows us
to propose suitable effective methods for a lot of typical problems (see, e.g., [16]),
in connection with the MC error there is a lack of constructive variance reduction
methods.

The well-known variance reduction methods (see [12, 16, 21] and the references
therein) of importance sampling and of control variates can be exploited only in the
case when an approximation of the required solution u(t, x) is known. However, in
general even rough approximations of the desired solution u(t, x) and its derivatives
∂u/∂xi(t, x), i = 1, . . . , d, are unknown beforehand. At first sight, it seems that ap-
proximating them roughly is not difficult since they can be found by the MC technique
using a comparatively small number of independent trajectories. But this presupposes
evaluating them at many points (tk, xk). Computing u(tk, xk) and ∂u/∂xi(tk, xk) by
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the MC technique requires different auxiliary sets of approximate trajectories because
of the different starting points (tk, xk). This is too expensive, i.e., as a rule, such a pro-
cedure is more expensive than simple increase of the number of trajectories starting
from the initial position (t0, x0), at which we aim to find the value of the solution u.

So, a suitable method of constructing u(tk, xk) and ∂u/∂xi(tk, xk) should be com-
paratively inexpensive. Therefore we cannot require a considerable accuracy of the es-
timates for u(tk, xk) and ∂u/∂xi(tk, xk) because there is a trade-off between accuracy
and computational expenses. Our proposition is to exploit conditional probabilistic
representations. Their employment together with the regression method allows us
to evaluate u(tk, x) and ∂u/∂xi(tk, x) using the single auxiliary set of approximate
trajectories starting from the initial position (t0, x0) only. This plays a crucial role in
obtaining sufficiently inexpensive (but at the same time useful for variance reduction)
estimates û(tk, x) and ∂̂u/∂xi(tk, x). The construction of û and ∂̂u/∂xi is accompa-
nied by a number of errors of a different nature. Although it is impossible to evaluate
these errors satisfactorily, the suitability of û(tk, x) and ∂̂u/∂xi(tk, x) for variance
reduction can be directly verified during computations since the MC error can always
be estimated. We emphasize that the obtained (even rather rough) estimates can
effectively be used for accurately evaluating the function u not only at the position
(t0, x0) but at many other positions as well.

This paper is most closely connected with [6, 12, 13, 14] (see also the [16]) and with
the works [21, 20] by N. Newton. The method of importance sampling from [6, 12]
is exploited in [25] for some specific physical applications. Various other aspects of
variance reduction related to simulating diffusions are considered, e.g., in [2, 4, 9, 10,
24] (see also the references therein). An extended list of works devoted to variance
reduction of MC simulations can be found in [7].

In section 2 we recall some known facts concerning the MC technique for linear
parabolic equations and the general scheme of regression method for estimating condi-
tional expectations. Section 3 is devoted to conditional probabilistic representations of
solutions of parabolic equations and their derivatives. These representations together
with regression approach play a decisive role in the economical estimating of u and
∂u/∂xi at all points (t, x), given the only set of trajectories starting from the initial
point (t0, x0). In section 3.2 we obtain the estimate û(s, x) and propose to estimate
the derivatives ∂u/∂xi(s, x) by ∂û/∂xi(s, x). This estimation of derivatives is inex-
pensive from the computational point of view, but they are rather rough. Section 3.3
is devoted to the more accurate way of estimating derivatives using a linear regression
method directly to find ∂̂u/∂xi(tk, x). In section 3.4, we obtain ∂̂u/∂xi(tk, x) in the
case of nonsmooth initial data exploiting probabilistic representations for ∂u/∂xi(s, x)
which rest on the Malliavin integration by parts. To this aim, we derive a conditional
version of the Malliavin integration-by-parts formula adapted to our context. It should
be noted that if the dimension d is large, the procedures of sections 3.3 and 3.4 are
computationally very demanding since they require integration of the d2-dimensional
system of first-order variation equations whose solution is present in the probabilistic
representations for ∂u/∂xi(s, x). Therefore, in practice, the inexpensive procedure
of section 3.2 is preferable if d is large. In section 4 we give a simple, analytically
tractable example to illustrate the benefits of the proposed variance reduction proce-
dure, and we also test it on a one-dimensional array of stochastic oscillators and on
the Black–Scholes pricing model for a binary asset-or-nothing call option. Section 5
gives a summary of the proposed approach to variance reduction.
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2. Preliminaries. In this section we recall some known facts concerning proba-
bilistic representations of the solutions of parabolic partial differential equations and
the regression method of estimating conditional expectations in the form suitable for
our purposes.

2.1. Probabilistic representations. Let us consider the Cauchy problem for
the linear parabolic equation

∂u

∂t
+

1
2

d∑
i,j=1

aij(t, x)
∂2u

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂u

∂xi
(2.1)

+ c(t, x)u+ g(t, x) = 0, t0 ≤ t < T, x ∈ Rd,

with the initial condition

(2.2) u(T, x) = f(x), x ∈ Rd.

The matrix a(t, x) = {aij(t, x)} in (2.1) is symmetric and at least positive semidefinite.
Let σ(t, x) be a matrix obtained from the equation

a(t, x) = σ(t, x)σ�(t, x).

Let (Ω,F ,Ft, P ), t0 ≤ t ≤ T, be a filtered probability space. The solution to
the problem (2.1)–(2.2) has the following probabilistic representation (the well-known
Feynman–Kac formula):

(2.3) u(s, x) = E[f(Xs,x(T ))Ys,x,1(T ) + Zs,x,1,0(T )],

where Xs,x(t), Ys,x,y(t), Zs,x,y,z(t), t ≥ s, is the solution of the Cauchy problem for
the system of SDEs

dX = b(t,X)dt+ σ(t,X)dw(t), X(s) = x,(2.4)

dY = c(t,X)Y dt, Y (s) = y,

dZ = g(t,X)Y dt, Z(s) = z.

Here w(t) = (w1(t), . . . , wd(t))� is a d-dimensional {Ft}t≥t0-adapted standard Wiener
process, and Y and Z are scalars. If y = 1, z = 0, we shall use the notation Ys,x(t) :=
Ys,x,1(t), Zs,x(t) := Zs,x,1,0(t) (analogous notation will be used later for some other
variables). So,

(2.5) u(s, x) = E[f(Xs,x(T ))Ys,x(T ) + Zs,x(T )].

There are various sets of sufficient conditions ensuring connection between the
solutions of the Cauchy problem (2.1)–(2.2) and their probabilistic representations
(2.5)–(2.4). For definiteness, we shall keep the following assumptions.

We assume that the coefficients b, σ, c, and g have bounded derivatives up to some
order, and additionally c and g are bounded on [t0, T ]×Rd. Further, we assume that
the matrix a(t, x) is positive definite and, moreover, the uniform ellipticity condition
holds: there exists σ0 > 0 such that

‖ a−1(t, x) ‖ = ‖ (σ(t, x)σ�(t, x))−1 ‖ ≤σ−1
0 , t0 ≤ t ≤ T, x ∈ Rd.
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As for function f(x), it is assumed to grow at infinity not faster than a polynomial
function. It can be both smooth and nonsmooth.

We note that the results of this paper can be used under other sets of conditions.
For instance, one can consider situations with nonglobally Lipschitz coefficients [18]
or with matrix a(t, x) which is positive semidefinite. For example, in section 4.2
we consider a numerical example with nonglobally Lipschitz coefficients and positive
semidefinite matrix a(t, x), and the example from section 4.3 has a discontinuous f(x).

The value u(s, x) from (2.5) can be evaluated using the weak-sense numerical
integration of the system (2.4) together with the MC technique. More specifically, we
have

u(s, x) ≈ E[f(X̄s,x(T ))Ȳs,x(T ) + Z̄s,x(T )](2.6)

≈ 1
M

M∑
m=1

[f(mX̄s,x(T ))mȲs,x(T ) + mZ̄s,x(T )] ,

where the first approximate equality involves an error due to replacing X , Y , Z by
X̄, Ȳ , Z̄ (the error is related to the approximate integration of (2.4)) and the error in
the second approximate equality comes from the MC technique; mX̄s,x(T ), mȲs,x(T ),
mZ̄s,x(T ), m = 1, . . . ,M, are independent realizations of X̄s,x(T ), Ȳs,x(T ), Z̄s,x(T ).
While the weak-sense integration of SDEs is developed sufficiently well and a lot
of different effective weak-sense numerical methods have been constructed (see, e.g.,
[16]), the methods of reducing the second error in (2.6) are more intricate.

The error of the MC method is evaluated by

ρ̄ = c
(var[f(X̄s,x(T ))Ȳs,x(T ) + Z̄s,x(T )])1/2

M1/2
,

where, e.g., the values c = 1, 2, 3 correspond to the fiducial probabilities 0.68, 0.95,
0.997, respectively. Introduce

Γ = Γs,x := f(Xs,x(T ))Ys,x(T ) + Zs,x(T ),(2.7)

Γ̄ = Γ̄s,x := f(X̄s,x(T ))Ȳs,x(T ) + Z̄s,x(T ).(2.8)

Since varΓs,x is close to varΓ̄s,x, we can assume that the error of the MC method is
estimated by

(2.9) ρ = c
(varΓs,x)1/2

M1/2
.

2.2. Variance reduction. If varΓs,x is large, then to achieve a satisfactory
accuracy we have to simulate a very large number of independent trajectories. Clearly,
variance reduction is of crucial importance for effectiveness of any MC procedure. To
reduce the MC error, one usually exploits some other probabilistic representations of
solutions to considered problems. To obtain various probabilistic representations of
the solution to the problem (2.1)–(2.2), we introduce the system (see [13, 14, 16])

dX = b(t,X)dt− σ(t,X)μ(t,X)dt+ σ(t,X)dw(t), X(s) = x,(2.10)

dY = c(t,X)Y dt+ μ�(t,X)Y dw(t), Y (s) = 1,

dZ = g(t,X)Y dt+ F�(t,X)Y dw(t), Z(s) = 0,
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where μ and F are column-vector functions of dimension d satisfying some regularity
conditions (e.g., they have bounded derivatives with respect to xi up to some order).
We should note that X , Y , Z in (2.10) differ from X , Y , Z in (2.4); however, this
does not lead to any ambiguity. The formula (2.5), i.e.,

(2.11) u(s, x) = EΓs,x,

remains valid under the new X , Y , Z. While the mean EΓ does not depend on the
choice of μ and F, the variance varΓ = EΓ2 − (EΓ)2 does. Thus, μ and F can be
used to decrease the variance varΓ and, consequently, the MC error can be reduced.
The following theorem is proved in [14] (see also [13, 16]).

Theorem 2.1. Let μ and F be such that for any x ∈ Rd there exists a solution
to the system (2.10) on the interval [s, T ]. Then the variance varΓ is equal to

(2.12) varΓ = E

∫ T

s

Y 2
s,x(t)

d∑
j=1

(
d∑

i=1

σij ∂u

∂xi
+ uμj + F j

)2

dt,

provided that the expectation in (2.12) exists. In (2.12) all the functions σij , μj , F j ,
u, ∂u/∂xi have (t,Xs,x(t)) as their argument.

In particular, if μ and F are such that

(2.13)
d∑

i=1

σij ∂u

∂xi
+ uμj + F j = 0, j = 1, . . . , d,

then varΓ = 0, i.e., Γ is deterministic.
We recall that if we put here F = 0, then we obtain the method of importance

sampling (first considered in [6, 12, 24]), and if we put μ = 0, then we obtain the
method of control variates (first considered in [21]). Theorem 2.1 establishes the
combining method of variance reduction proved in [13]; see also [16].

Obviously, μ and F satisfying (2.13) cannot be constructed without knowing
u(t, x), s ≤ t ≤ T, x ∈ Rd. Nevertheless, the theorem claims a general possibility
of variance reduction by a proper choice of the functions μj and F j , j = 1, . . . , d.
Theorem 2.1 can be used, for example, if we know a function û(t, x) connected with
an approximating problem and which is close to u(t, x). In this case we take any μ̂j ,
F̂ j , j = 1, . . . , d, satisfying

(2.14)
d∑

i=1

σij ∂û

∂xi
+ ûμ̂j + F̂ j = 0,

and then the variance var Γ, though not zero, is small.
Let us emphasize that (2.13) serves only as a guidance for getting suitable μ and

F (recall that the mean EΓ does not depend on the choice of μ and F ). In particular,
the derivative estimate ∂̂u/∂xi can differ from ∂û/∂xi. In such cases, instead of (2.14)
we use

(2.15)
d∑

i=1

σij ∂̂u

∂xi
+ ûμ̂j + F̂ j = 0.

It might seem that the problem of at least rough approximation of the functions
u(t, x) and ∂u/∂xi(t, x) is not difficult since they can be found approximately due to
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the Feynman–Kac formula, numerical integration of SDEs, and the MC technique.
But then numerical integration of the system (2.10) presupposes evaluating u(tk, X̄k)
and ∂u/∂xi(tk, X̄k) at many points (tk, X̄k). Their evaluation by the MC method
requires different sets of auxiliary approximate trajectories because of the different
starting points (tk, X̄k). This is too expensive; i.e., as a rule, such a procedure is more
expensive than simple increase of M in (2.6).

Our aim is to propose a systematic method of approximating the functions u
and ∂u/∂xi, i = 1, . . . , d, relatively cheaply, and hence obtain systematic methods of
variance reduction. To this end, we exploit the regression method of evaluating u(tk, x)
and ∂u/∂xi(tk, x), which allows us to use only one set of approximate trajectories
starting from the initial position (t0, x0).

2.3. Pathwise approach for derivatives ∂u/∂xi(s, x). The probabilistic
representation for the derivatives

∂i(s, x) :=
∂u(s, x)
∂xi

, i = 1, . . . , d,

can be obtained by the straightforward differentiation of (2.11) (see, e.g., [7, 13]):

∂i(s, x) = E

⎛⎝ d∑
j=1

∂f(Xs,x(T ))
∂xj

δi
s,xX

j(T )Ys,x(T )(2.16)

+ f(Xs,x(T ))δi
s,xY (T ) + δi

s,xZ(T )

⎞⎠ ,

where

δiXj(t) := δi
s,xX

j(t) :=
∂Xj

s,x(t)
∂xi

, δiY (t) := δi
s,xY (t) :=

∂Ys,x(t)
∂xi

,

δiZ(t) := δi
s,xZ(t) :=

∂Zs,x(t)
∂xi

, s ≤ t ≤ T, i, j = 1, . . . , d,

satisfy the system of variational equations associated with (2.10):

dδiX =
d∑

j=1

∂(b(t,X) − σ(t,X)μ(t,X))
∂xj

δiXjdt+
d∑

j=1

∂σ(t,X)
∂xj

δiXj dw(t) ,(2.17)

δiXj(s) = 0 if j �= i, and δiX i(s) = 1 ,

dδiY =
d∑

j=1

Y
∂c(t,X)
∂xj

δiXjdt+ c(t,X)δiY dt(2.18)

+
d∑

j=1

Y
∂μ�(t,X)

∂xj
δiXjdw(t) + μ�(t,X)δiY dw(t), δiY (s) = 0,

dδiZ =
d∑

j=1

Y
∂g(t,X)
∂xj

δiXjdt+ g(t,X)δiY dt(2.19)

+
d∑

j=1

Y
∂F�(t,X)

∂xj
δiXjdw(t) + F�(t,X)δiY dw(t), δiZ(s) = 0.
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Introduce a partition of the time interval [t0, T ], for simplicity the equidistant
one: t0 < t1 < · · · < tN = T with step size h = (T − t0)/N. Let us apply a
weak scheme (see, e.g., [16]) to the systems of SDEs (2.10), (2.17)–(2.19) to obtain
independent approximate trajectories (tk, mX̄(tk)), m = 1, . . . ,M, all starting from
the point (t0, x), and mȲ (tk), mZ̄(tk), mδ̄

iX(tk), mδ̄
iY (tk), mδ̄

iZ(tk) with mȲ (t0) =
1, mZ̄(t0) = 0, mδ̄

iXj(t0) = 0 if j �= i, and mδ̄
iX i(t0) = 1, mδ̄

iY (t0) = 0, mδ̄
iZ(t0) =

0. Then we obtain the following MC estimates of the derivatives ∂u/∂xi(t0, x) from
(2.16) with (s, x) = (t0, x):

∂̂i(t0, x) =
1
M

M∑
m=1

⎡⎣ d∑
j=1

∂f(mX̄(T ))
∂xj mδ̄

iXj(T ) mȲ (T )(2.20)

+ f(mX̄(T )) mδ̄
iY (T ) + mδ̄

iZ(T )

⎤⎦ .
Clearly, the estimates ∂̂i(tk, x) for derivatives ∂u/∂xi(tk, x) can be obtained analo-
gously.

Theorem 2.1 asserts that the variance in evaluating u by (2.11) can reach zero
value for some μ and F . In [13] it is proved that for the same μ and F the variance
in evaluating ∂i by (2.16) is equal to zero as well (we pay attention that not only μ
and F but also their derivatives are present in (2.18) and (2.19)).

2.4. Regression method of estimating conditional expectation. Let us
recall the general scheme of the linear regression method (see, e.g., [8]). Consider
a sample (mX, mV ), m = 1, . . . ,Mr, from a generic member (X,V ) of the sample,
where X is a d-dimensional and V is a one-dimensional random variable. We pay
attention that we denote by Mr the size of the sample used in the regression, while M
is the number of realizations used for computing the required quantity u(t0, x0) (see
(2.6)). Let the values of X belong to a domain D ⊂ Rd. It is of interest to estimate
the regression function

(2.21) c(x) = E(V |X = x).

Let {ϕl(x)}L
l=1 be a set of basis functions each mapping D to R. As an estimate ĉ(x)

of c(x), we choose the function of the form
∑L

l=1 αlϕl(x) that minimizes the empirical
risk:

(2.22) α̂ = arg min
α∈RL

1
Mr

Mr∑
m=1

(
mV −

L∑
l=1

αlϕl(mX)

)2

.

So

(2.23) ĉ(x) =
L∑

l=1

α̂lϕl(x),

where α̂l satisfy the system of linear algebraic equations

a11α1 + a12α2 + · · · + a1LαL = b1(2.24)

· · · · · · · · · · ·
aL1α1 + aL2α2 + · · · + aLLαL = bL
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with

(2.25) aln =
1
Mr

Mr∑
m=1

ϕl(mX)ϕn(mX), bl =
1
Mr

Mr∑
m=1

ϕl(mX) mV, l, n = 1, . . . , L.

Thus, the usual base material in the field of regression is a sample (mX, mV ), m =
1, . . . ,Mr, from a generic member (X,V ) of the sample.

Remark 2.2. Although in this paper we use linear regression, in principle other
regression methods (see, e.g., [3, 8]) can be exploited as well.

3. Conditional probabilistic representations and methods of evaluating
u(s, x) and ∂u/∂xi(s, x) by regression. The routine (unconditional) probabilis-
tic representations are ideal for the MC evaluation of u(t0, x0) by using a set of
trajectories starting from the point (t0, x0). To find u(s, x) by this approach, we need
to construct another set of trajectories which starts from (s, x). However, we can use
the previous set starting from (t0, x0) to compute u(s, x), s > t0, if we make use of
conditional probabilistic representations. In this section we introduce the conditional
probabilistic representations for solutions of parabolic equations and for derivatives
of the solutions.

3.1. Conditional probabilistic representations for u(s, x) and ∂u/∂xi

(s, x). Along with the unconditional probabilistic representation (2.11), (2.7), (2.10)
for u(s, x), we have the following conditional one:

u(s, x) = E (f(Xs,x(T ))Ys,x(T ) + Zs,x(T ))(3.1)

= E (f(Xs,X(T ))Ys,X(T ) + Zs,X(T ) with X := Xt0,x0(s)|Xt0,x0(s) = x) .

This formula can be considered as the conditional version of the Feynman–Kac
formula.

Analogously to (3.1), we get for ∂i(s, x) = ∂u/∂xi(s, x) (see (2.16))

∂i(s, x) = E

⎛⎝ d∑
j=1

∂f(Xs,x(T ))
∂xj

δi
s,xX

j(T )Ys,x(T ) + f(Xs,x(T ))δi
s,xY (T ) + δi

s,xZ(T )

⎞⎠
= E

⎛⎝ d∑
j=1

∂f(Xs,X(T ))
∂xj

δi
s,XX

j(T )Ys,X(T )(3.2)

+ f(Xs,X(T ))δi
s,XY (T ) + δi

s,XZ(T )|X := Xt0,x0(s) = x

⎞⎠ .

So, we have two different probabilistic representations both for u(s, x) and ∂i(s, x):
the first one is in the form of unconditional expectation (see section 2), and the second
one (i.e., (3.1) and (3.2)) is in the form of conditional expectation. The first form
can be realized naturally by the MC approach and the second one by a regression
method. As we discussed before, it is too expensive to run sets of trajectories starting
from various initial points (s, x), and we do have the set of trajectories (t, mXt0,x0(t)).
Taking this into account, the second way (which relies on the conditional probabilistic
representations and regression) is more preferable although it is less accurate.

A proof of (3.1) and (3.2) relies on the following assertion: if ζ is F̃ -measurable,
f(x, ω) is independent of F̃ , and Ef(x, ω) = φ(x), then E(f(ζ, ω)|F̃) = φ(ζ) (see,
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e.g., [11]). From this assertion, for any measurable g it holds (with ζ = Xt0,x0(s), F̃ =
σ{Xt0,x0(s)}, f(x, ω) = g(Xs,x(T ))) that

E(g(Xs,X(T ))|Xt0,x0(s) = x) = Eg(Xs,x(T )) with X := Xt0,x0(s),

hence (3.1) and (3.2).

3.2. Evaluating u(s, x). In evaluating u(s, x) by regression, the pairs (X,V )
and (mX,m V ) have the form

(X,V ) ∼ (Xt0,x0(s), f(Xs,X(T ))Ys,X(T ) + Zs,X(T )) ,(3.3)

(mX, mV ) ∼ (mXt0,x0(s), f(mXs,mX(T )) mYs,mX(T ) + mZs,mX(T )) .

To realize a regression algorithm, we construct the set of trajectories (t, mXt0,x0(t)).
Of course, we construct them approximately at the time moments s = tk and store
the obtained values. So, in reality we have (tk, mX̄t0,x0(tk)). The time s in (3.3) is
equal to that of tk. We note that

(3.4) Xs,X(t) = Xs,Xt0,x0 (s)(t) = Xt0,x0(t), t ≥ s;

i.e., Xs,X(t) is a continuation of the base solution starting at the moment t0 and
Xs,X(T ) in (3.3) is equal to Xt0,x0(T ). It is not so for Y :

Ys,X(T ) �= Yt0,x0(T ).

Let us recall that Ys,X(t) is the solution of the equation (see (2.10))

(3.5) dYs,X = c(t,Xs,X(t))Ys,Xdt+ μ�(t,Xs,X(t))Ys,Xdw(t), Y (s) = 1.

Clearly,

(3.6) Ys,X(t) =
Yt0,x0(t)
Yt0,x0(s)

, s ≤ t ≤ T,

hence storing Yt0,x0(t), we can get Ys,X(T ) in (3.3).
Analogously, Zs,X(T ) �= Zt0,x0(T ). It is not difficult to find that

(3.7)

Zs,X(t) =
1

Yt0,x0(s)
(Zt0,x0(t)−Zt0,x0(s)), Zs,X(T ) =

1
Yt0,x0(s)

(Zt0,x0(T )−Zt0,x0(s)).

Therefore

u(s, x) = E

(
f(Xt0,x0(T ))

Yt0,x0(T )
Yt0,x0(s)

+
1

Yt0,x0(s)
(Zt0,x0(T ) − Zt0,x0(s)) |Xt0,x0(s) = x

)
.

Thus, storing mXt0,x0(t), mYt0,x0(t), mZt0,x0(t), t0 ≤ t ≤ T (in fact, storing mX̄, mȲ ,

mZ̄ at tk), we get the pairs (mX, mV ) from

(X,V ) ∼

(
Xt0,x0(s), f(Xt0,x0(T ))

Yt0,x0(T )
Yt0,x0(s)

+
1

Yt0,x0(s)
(Zt0,x0(T ) − Zt0,x0(s))

)
.

Having this sample, one can obtain û(s, x) by the linear regression method (see sec-
tion 2.4):

(3.8) û(s, x) =
L∑

l=1

α̂lϕl(x).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

896 G. N. MILSTEIN AND M. V. TRETYAKOV

From (3.8) it is straightforward to obtain a very simple estimate ∂̂i(s, x) for ∂i(s, x) =
∂u/∂xi(s, x):

(3.9) ∂̂i(s, x) =
∂û(s, x)
∂xi

=
L∑

l=1

α̂l
∂ϕl(x)
∂xi

.

Then from (2.14) we find some μ̂(s, x), F̂ (s, x) for any t0 < s < T (in reality for
any tk) and construct the variate Γ̂(t0, x0) (see (2.5) and (2.7)) for u(t0, x0) due to
the system (2.10) with μ = μ̂ and F = F̂ . We repeat that the variate Γ̂(t0, x0)
is unbiased for any μ̂ and F̂ . We note that it is sufficient to have rather rough (in
comparison with the required accuracy in evaluating u(t0, x0)) approximations μ̂(s, x)
and F̂ (s, x) of some optimal μ and F from (2.13). Therefore, it is natural to use a
coarser discretization and fewer MC runs in the regression part of evaluating û(s, x)
due to (3.8), i.e., to take Mr in (2.22) smaller than M and to construct samples mX in
(2.25) with a comparatively rough discretization. Then in computing u(t0, x0) with a
finer discretization, the necessary values of μ̂ and F̂ at the intermediate points can be
obtained after, e.g., linear interpolation of û with respect to time. The success of any
regression-based approach clearly depends on the choice of basis functions. This is
known to be a rather complicated problem, both in practice and theory. In fact, it is
necessary to use a special basis tailored to each particular problem. Fortunately, the
variance can easily be evaluated during simulation. Therefore, it is not very expensive
from the computational point of view to check the quality of a given basis if we take
coarse discretizations both in the regression part and in the main part of evaluating
u(t0, x0) and if we take not too large numbers Mr and M of MC runs. This can help
in choosing a proper basis.

Remark 3.1. Clearly, α̂l depend on s (on tk). Let us note that the number L and
the set {ϕl(x)}L

l=1 may depend on tk as well.
Remark 3.2. It is obvious that in practice we use (2.10) with different μ and

F in the implementation of the regression and in computing the required quantity
u(t0, x0). Indeed, in the regression part of the procedure we can take arbitrary μ and
F (e.g., both zero), while in computing u(t0, x0) we choose μ and F according to
(2.14) with û obtained via the regression or according to (2.15) with û and ∂̂u/∂xi

obtained via the regression.
Remark 3.3. At s = t0 the system (2.24) degenerates into the single equation (we

suppose that not all of ϕl(x0) are equal to zero)

(3.10)

ϕ1(x0)α1 + · · · + ϕL(x0)αL =
1
Mr

Mr∑
m=1

[f(mX̄t0,x0(T )) mȲt0,x0(T ) + mZ̄t0,x0(T )].

Therefore, the coefficients α1(t0), . . . , αL(t0) cannot be found from (3.10) uniquely.
At the same time, the linear combination α1(t0)ϕ1(x0) + · · ·+αL(t0)ϕL(x0), i.e., the
estimate

û(t0, x0) =
1
Mr

Mr∑
m=1

[f(mX̄t0,x0(T )) mȲt0,x0(T ) + mZ̄t0,x0(T )],

is defined uniquely. Clearly, when tk is close to t0 (for instance, at t1), the system
(2.24), though not degenerate, is ill-conditioned. Nevertheless, for such tk and for x
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close to x0, the estimate

û(tk, x) = α1(tk)ϕ1(x) + · · · + αL(tk)ϕL(x)

can be found sufficiently accurate. However, since it is not possible to satisfactorily de-
termine the coefficients α1(tk), . . . , αL(tk), we cannot get the derivatives ∂û(tk, x)/∂xi

by direct differentiation as α1(tk)∂ϕ1(x)/∂xi + · · ·+ αL(tk)∂ϕL(x)/∂xi. In addition,
let us emphasize that such difficulties are not essential for the whole procedure of vari-
ance reduction because the variance is equal to the integral (2.12), and unsatisfactory
knowledge of u and ∂u/∂xi on short parts of the interval [t0, T ] does not significantly
affect the value of the integral.

3.3. Evaluating ∂u/∂xi(s, x). The problem of evaluating ∂u/∂xi(s, x) is of
independent importance due to its connection with numerical computation of Greeks
in finance. Many articles are devoted to pathwise methods of estimating Greeks (see
[7] and the references therein; see also [13]). In [17] the finite-difference-based method
is developed, and [5, 4] suggest using Malliavin calculus for computing Greeks. Several
pathwise and finite-difference-based methods for calculating sensitivities of Bermudan
options using regression methods and MC simulations are considered in [1] (see also
the references therein). In this section we propose a conditional version of the pathwise
method, and in section 3.4 we present a conditional version of the approach based on
the Malliavin integration by parts for evaluating ∂u/∂xi(s, x).

As mentioned previously, differentiating the equality (3.8) gives an estimate for
∂i(s, x) = ∂u/∂xi(s, x) (see (3.9)); however, in general, it is rather rough. A more
accurate way is to use the linear regression method directly.

In evaluating ∂i(s, x) by regression, the pair (X,V i) has the form (see (3.2))

(3.11)
X = Xt0,x0(s),

V i =
d∑

j=1

∂f(Xs,X(T ))
∂xj

δi
s,XX

j(T )Ys,X(T ) + f(Xs,X(T ))δi
s,XY (T ) + δi

s,XZ(T ).

We already have expressions forXs,X(T ), Ys,X(T ), Zs,X(T ) viaXt0,x0(t), Yt0,x0(t),
Zt0,x0(t), with t being equal to s and T (see the formulas (3.4), (3.6), (3.7)). Our near-
est aim is to express δi

s,XX
j(T ), δi

s,XY (T ), δi
s,XZ(T ) via Xt0,x0(t), Yt0,x0(t), Zt0,x0(t),

δi
t0,x0

Xj(t), δi
t0,x0

Y (t), δi
t0,x0

Z(t).
We begin with δi

s,XX
j(t). The column-vector δi

s,XX(t) is the solution of the lin-
ear homogeneous stochastic system (2.17) whose coefficients depend on Xs,X(t) =
Xt0,x0(t). Let the matrix

Φs,X(t) := {δi
s,XX

j(t)}
be the fundamental matrix of solutions of (2.17) normalized at time s, i.e., Φs,X(s) =
I, where I is the identity matrix. Its element on the jth row and ith column is equal
to δi

s,XX
j(t). Clearly,

(3.12) Φs,X(t) = Φt0,x0(t)Φ
−1
t0,x0

(s).

Now let us turn to the column-vector δs,XY (t), consisting of components δi
s,XY (t).

We have (see (2.18))

dδs,XY = Ys,X(t)Φ�
s,X(t) ∇c(t,Xs,X(t))dt+ c(t,Xs,X(t))δs,XY dt(3.13)

+Ys,X(t)Φ�
s,X(t) ∇[μ�(t,Xs,X(t))dw(t)] + δs,XY μ

�(t,Xs,X(t))dw(t), δs,XY (s) = 0.
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Due to the equality Xs,X(t) = Xt0,x0(t) and (3.6) and (3.12), we get from (3.13)

dδs,XY =
Yt0,x0(t)
Yt0,x0(s)

[Φ−1
t0,x0

(s)]�Φ�
t0,x0

(t) ∇c(t,Xt0,x0(t))dt + c(t,Xt0,x0(t))δs,XY dt

(3.14)

+
Yt0,x0(t)
Yt0,x0(s)

[Φ−1
t0,x0

(s)]�Φ�
t0,x0

(t) ∇[μ�(t,Xt0,x0(t))dw(t)]

+ δs,XY μ
�(t,Xt0,x0(t))dw(t), δs,XY (s) = 0.

Taking into account the equality

dδt0,x0Y (t) = Yt0,x0(t)Φ
�
t0,x0

(t) ∇c(t,Xt0,x0(t))dt + c(t,Xt0,x0(t))δt0,x0Y (t)dt

+Yt0,x0(t)Φ
�
t0,x0

(t) ∇[μ�(t,Xt0,x0(t))dw(t)] + δt0,x0Y (t)μ�(t,Xt0,x0(t))dw(t),

it is not difficult to verify that

(3.15) δs,XY (t) =
1

Yt0,x0(s)
[Φ−1

t0,x0
(s)]�

(
δt0,x0Y (t) − Yt0,x0(t)

Yt0,x0(s)
δt0,x0Y (s)

)
.

In the similar way we obtain

δs,XZ(t) =
1

Yt0,x0(s)
[Φ−1

t0,x0
(s)]� (δt0,x0Z(t) − δt0,x0Z(s))(3.16)

− 1
Y 2

t0,x0
(s)

[Φ−1
t0,x0

(s)]�δt0,x0Y (s) (Zt0,x0(t) − Zt0,x0(s)) .

Hence the column-vector ∂(s, x) with the components ∂i(s, x) is equal to

∂(s, x) = E

(
Yt0,x0(T )
Yt0,x0(s)

[Φ−1
t0,x0

(s)]�Φ�
t0,x0

(T ) ∇f(Xt0,x0(T ))(3.17)

+ f(Xt0,x0(T ))δs,XY (T ) + δs,XZ(T ) |Xt0,x0(s) = x

)
,

where δs,XY (T ) and δs,XZ(T ) are from (3.15) and (3.16).
Thus, storing mXt0,x0(t), mYt0,x0(t), mZt0,x0(t), mΦt0,x0(t), mδt0,x0Y (t), mδt0,x0

Z(t), t0 ≤ t ≤ T , we get the corresponding samples

(mX, mV
i) =

(
mXt0,x0(s),

(
mYt0,x0(T )
mYt0,x0(s)

[mΦ−1
t0,x0

(s)]� mΦ�
t0,x0

(T ) ∇f(mXt0,x0(T ))

(3.18)

+ f(mXt0,x0(T )) mδs,mXY (T ) + mδs,mXZ(T )
)i
)
,

where mΦt0,x0(s) is a realization of the fundamental matrix Φt0,x0(s) which corre-
sponds to the same elementary event ω ∈ Ω as the realization mXt0,x0(t). We use
(mX, mV

i) for evaluating ∂i(s, x), i = 1, . . . , d, by the linear regression method:

(3.19) ∂̂i(s, x) =
L∑

l=1

β̂i
lψl(x).
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Remark 3.4. This paper is most closely connected with [6, 12, 13, 14] (see also
[16]) and with the works [21, 20] by N. Newton. In [21, 20], both the method of con-
trol variates and the method of importance sampling for calculating solutions u(t, x)
of parabolic partial differential equations by the MC method are considered. In both
cases, a perfect variate (i.e., one which is unbiased and has zero variance) is con-
structed based on the Funke–Shevlyakov–Haussmann formula (see the corresponding
reference and details in [21]; such a formula is usually called as the Clark–Ocone–
Haussmann formula). Then some approximation methods of simulating the variates
are proposed in [21, 20] to yield unbiased estimators for the desired solution u(t, x)
with reduced variances. If the dimension d is large, the most labor-consuming cal-
culations are connected with integration of the d2-dimensional system of first-order
variation equations. This is required to construct the estimators. In this paper, we
use variates in the form (2.11), (2.10) with μ and F satisfying (2.13). Due to The-
orem 2.1, these variates are perfect if u and ∂u/∂xi are exact. We evaluate u and
∂u/∂xi based on conditional probabilistic representations and construct unbiased es-
timators for u(t, x) using (2.15) or (2.14). We note that (2.14) allows us to avoid
estimating ∂u/∂xi (see (3.8)–(3.9)) and hence to avoid integration of the equations
of first-order variation. In addition, the obtained estimator by (2.14) remains unbi-
ased. In spite of the fact that our approach and that of N. Newton clearly differ, they
undoubtedly have profound connections. For example, the Clark–Ocone–Haussmann
formula, being the basis for Newton’s approach, can fairly easily be derived using the
conditional probabilistic representations (3.1), (3.2).

3.4. Evaluating ∂u/∂xi(s, x) using the Malliavin integration by parts.
If f(x) is an irregular function, one can use the procedure recommended in section 3.2,
where we do not need direct calculations of derivatives ∂u/∂xi. Another way consists
in approximating f by a smooth function with the consequent use of the procedure
from section 3.3. Because we do not pursue a high accuracy in estimating u and
∂u/∂xi, such approximation of f can be quite satisfactory. For direct calculation
of derivatives ∂u/∂xi without smoothing f, we can use the conditional version of
the integration-by-parts (Bismut–Elworthy–Li) formula. This formula is successfully
applied for evaluating deltas in the case of an irregular f (see, e.g., [5, 4, 22]).

For calculating ∂u/∂xi in the case of u given by

u(s, x) = EΓs,x = E[f(Xs,x(T ))Ys,x(T ) + Zs,x(T )],

where Xs,x(T ), Ys,x(T ), Zs,x(T ) satisfy system (2.10), the following variant of the
integration-by-parts formula can be derived:

∂i(s, x) =
1

T − s
EΓs,x

∫ T

s

[
σ−1 ∂Xs,x(s′)

∂xi

]�
dw(s′)(3.20)

− 1
T − s

EΓs,x

∫ T

s

μ�σ−1 ∂Xs,x(s′)
∂xi

ds′ +
1

T − s
E

∫ T

s

Zs,x(s′)μ�σ−1 ∂Xs,x(s′)
∂xi

ds′

+
1

T − s
EΓs,x

∫ T

s

1
Ys,x(s′)

∂Ys,x(s′)
∂xi

ds′ − 1
T − s

E

∫ T

s

Zs,x(s′)
Ys,x(s′)

∂Ys,x(s′)
∂xi

ds′

− 1
T − s

E

∫ T

s

Ys,x(s′)F�σ−1 ∂Xs,x(s′)
∂xi

ds′ +
1

T − s
E

∫ T

s

∂Zs,x(s′)
∂xi

ds′ := Di(s, x),

where μ�, σ−1, and F� have (s′, Xs,x(s′)) as their arguments. In particular, if c =
0, g = 0, μ = 0, F = 0, we get the well-known integration-by-parts formula (see,
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e.g., [22]):

(3.21) ∂i(s, x) =
1

T − s
Ef(Xs,x(T ))

∫ T

s

[
σ−1(s′, Xs,x(s′))

∂Xs,x(s′)
∂xi

]�
dw(s′).

As in section 3.1, together with the unconditional probabilistic representation
(3.20) for ∂i(s, x), we have the following conditional one:

(3.22) ∂i(s, x) = E(Di(s,X)|X := Xt0,x0(s) = x).

Again, the formula (3.20) is natural for the MC approach and (3.22) for a regression
method. An implementation of the regression method is based upon the corresponding
approximation (mX, mV

i) of the pair (X,V i) = (Xt0,x0(s), D
i(s,Xt0,x0(s))) follow-

ing the ideas of section 3.3.

3.5. Two-run procedure. The straightforward implementation of evaluating
u(s, x) and ∂u/∂xi(s, x) by regression as described in sections 3.2 and 3.3 requires
storing

mΛ(tk) := (mXt0,x0(tk), mYt0,x0(tk), mZt0,x0(tk), mΦt0,x0(tk), mδt0,x0Y (tk),

mδt0,x0Z(tk))

(or, more precisely, their approximations mΛ̄(tk)) at all tk, k = 1, . . . , N, in the main
computer memory (RAM) until the end of the simulation. This puts a requirement
on the RAM size that is too demanding and limits the practicality of the proposed
approach since in almost any practical problem a relatively large number of time steps
is needed. However, this difficulty can be overcome and we can avoid storing mΛ̄(tk)
at all tk by implementing the two-run procedure described below.

First, we recall that, as a rule, pseudorandom number generators used for MC
simulations have the property that the sequence of random numbers obtained by them
is easily reproducible (see, e.g., [16] and the references therein). Let us fix a sequence
of pseudorandom numbers. The two-run procedure can schematically be presented as
follows.

First run:
• simulate Mr number of independent trajectories mΛ̄(tk), k = 1, . . . , N, with

an arbitrary choice of μ and F (e.g., μ = 0 and F = 0);
• compute and store the values mΓ̄ to form the component V needed for the

regression in the second run and compute and store the values

mȲ (T )mΦ̄�
t0,x0

(T ) ∇f(mX̄(T )) + f(mX̄(T )) mδY (T ) +m δZ(T )

and mȲ (T ) to form the components V i in the second run.
Second run:
• reinitialize the random number generator so that it produces the same se-

quence as for the first run;
• for k = 1, . . . , N

– simulate the same mΛ̄(tk), m = 1, . . . ,Mr, as in the first run (i.e., they
correspond to the same sequence of pseudorandom numbers as in the
first run), keeping only the current mΛ̄(tk) in RAM;

– use the values stored in RAM during the first run and mΛ̄(tk) from this
run to find ū(tk, x) and ∂u/∂xi(tk, x) by regression (mΛ̄(tk) and mΛ̄(T )
form the pairs (mX, mV ) and (mX, mV

i) needed for the regression);
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– use the found ū(tk, x) and ∂u/∂xi(tk, x) to obtain μ̄(tk, x) and F̄ (tk, x)
required for variance reduction (see section 2.2);

– simulate (2.10) with μ = μ̄ and F = F̄ on this step and thus obtain M
independent triples

(mX̃t0,x0(tk), mỸt0,x0(tk), mZ̃t0,x0(tk)) = (mX̃tk−1,mX̃(tk−1)
(tk),

mỸ
tk−1 ,mX̃(tk−1),mỸ (tk−1)(tk),m Z̃

tk−1 ,mX̃(tk−1),mỸ (tk−1),mZ̃(tk−1)
(tk)),

which we keep in RAM until the next step;
• use the obtained (mX̃t0,x0(T ), mỸt0,x0(T ), mZ̃t0,x0(T )) to get the required
u(t0, x0) (see (2.6)).

We emphasize that in the two-run procedure at each time moment s = tk we
need to keep in memory only the precomputed values stored at the end of the first
run and the values mΛ̄(tk) and (mX̃t0,x0(tk), mỸt0,x0(tk), mZ̃t0,x0(tk)) (only at the
current time step k), which is well within RAM limits of a PC.

We note that the two-run realization of the procedure from section 3.2 based on
using regression for estimating u only is less computationally demanding (both on
processor time and RAM and especially for problems of large dimension d) than the
procedures of sections 3.3 and 3.4 which estimate the derivatives of u via regression.

The two-run procedure was used in the numerical experiments of sections 4.2
and 4.3.

4. Examples. The first example is partly illustrative and partly theoretical.
The second and third examples are numerical.

4.1. Heat equation. Consider the Cauchy problem

∂u

∂t
+
σ2

2
∂2u

∂x2
= 0, t0 ≤ t < T, x ∈ R,(4.1)

u(T, x) = x2.

Its solution is

(4.2) u(t, x) = σ2(T − t) + x2.

The probabilistic representation (2.10), (2.11) with μ = 0 takes the form

u(s, x) = E
[
X2

s,x(T ) + Zs,x(T )
]

= EΓs,x,(4.3)

dX = σdw(t), X(s) = x,(4.4)

dZ = F (t,X)dw(t), Z(s) = 0.(4.5)

Due to Theorem 2.1, we have varΓs,x = var
[
X2

s,x(T ) + Zs,x(T )
]

= 0 for the optimal
choice of the function F (t, x) = −σ∂u/∂x = −2σx. We note that in this example
∂u/∂x and the optimal F do not depend on time t.

For the purpose of this illustrative example, we evaluate u(0, 0) = EΓ0,0. Let us
simulate (4.4) exactly (i.e., we have no error of numerical integration):

(4.6) X0 = x, Xk+1 = Xk + σΔkw, k = 0, . . . , N − 1, Δkw := w(tk+1) − w(tk).

For F ≡ 0, we have u(0, 0) = EΓ0,0 ≈ û(0, 0) = 1
M

∑M
m=1 mX

2
N , where mXN

are independent realizations of XN obtained by (4.6). Further, varΓ0,0 = 2σ4T 2, and
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hence the MC error is equal to (see (2.9))

(4.7) ρ = c

√
2σ2T√
M

.

For instance, to achieve the accuracy ρ = 0.0001 for c = 3 (recall that there is no
error of numerical integration here) in the case of σ = 1 and T = 10, one needs to
perform M = 18 × 1010 MC runs.

To reduce the MC error, we estimate ∂u/∂x by regression to get F̂ (tk, x) close
to the optimal F = −2σx. As the basis functions for the regression, we take the first
two Hermite polynomials:

(4.8) ψ1(x) = 1, ψ2(x) = 2x.

We note that in this example the required derivative ∂u/∂x can be expanded in the
basis (4.8); i.e., here we do not have any error due to the cut-off of a set of basis
functions. In the construction of the estimate for ∂u/∂x, we put F = 0 in (4.5).

The variational equation associated with (4.4) has the form (see (2.17)) dδX = 0,
δX(s) = 1, and hence δX(t) = 1, t ≥ s. Thus, the sample from (3.18) takes the form
(mX, mV ) = (mXt0,x0(s), 2 mXt0,x0(T )) and the estimator ∂̂(tk, x) for ∂u/∂x(tk, x)
is constructed as

(4.9) ∂̂(tk, x) = α̂1(tk) + 2α̂2(tk)x, k = 1, . . . , N,

where α̂1(tk) and α̂2(tk) satisfy the system of linear algebraic equations (see (2.24)–
(2.25))

a11α1 + a12α2 = b1,(4.10)

a21α1 + a22α2 = b2,

a11 = 1, a12 = a21 := a12(tk) =
1
Mr

Mr∑
m=1

2 × mX(tk),(4.11)

a22 := a22(tk) =
1
Mr

Mr∑
m=1

4 × (mX(tk))2 ,

b1 := b1(tk) =
1
Mr

Mr∑
m=1

2 × mX(T ), b2 := b2(tk) =
1
Mr

Mr∑
m=1

4 × mX(tk) × mX(T ).

Here mX(tk), m = 1, . . . ,Mr, k = 1, . . . , N, are independent realizations of X(tk)
obtained by (4.6). Hence

(4.12) α̂1(tk) =
b1a22 − b2 a12

a22 − (a12)
2 , α̂2(tk) =

b2 − b1 a12

a22 − (a12)
2 .

We define

F̂ (0, x) = − σ

Mr

Mr∑
m=1

2 × mX(T ),(4.13)

F̂ (t, x) = −σ (α̂1(tk) + 2α̂2(tk)x) for t ∈ (tk−1, tk], k = 1, . . . , N.
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We simulate (4.5) with F = F̂ (t, x) exactly (i.e., again we have no error of numerical
integration):

Z0 = 0,(4.14)

Zk+1 = Zk − σα̂1(tk+1)Δkw − 2σ2α̂2(tk+1)w(tk)Δkw − σ2α̂2(tk+1)
[
(Δkw)2 − h

]
.

The increments Δkw are the same both in (4.6) and in (4.14) and are independent of
the ones used to estimate α̂1 and α̂2.

We simulate

(4.15) u(0, 0) = EΓ0,0 = E
(
X2

N + ZN

) ≈ û(0, 0) =
1
Mr

Mr∑
m=1

(
mX

2
N + mZN

)
,

where mXN and mZN are independent realizations of XN and ZN obtained according
to (4.6) and (4.14). We note that the approximation (4.15) does not have the numer-
ical integration error or the error due to the cut-off of the basis; it has the MC error
only.

Using Theorem 2.1, one can evaluate varΓ0,0 in the case of F = F̂ defined in
(4.13) and obtain varΓ0,0 ≈ 4σ4T 2/Mr. Then the MC error ρ in this case is equal to
(compare with (4.7))

(4.16) ρ ≈ c
2σ2T√
MMr

.

This example illustrates that in the absence of the error due to the cut-off of a set of
basis functions used in regression and of the numerical integration error, the MC error
is reduced ∼ 1/

√
Mr times by the proposed variance reduction technique. This is,

of course, a significant improvement. Indeed, let us return to the example discussed
after (4.7). The estimate (4.16) implies that to achieve the accuracy ρ = 0.0001 for
c = 3 in the case of σ = 1 and T = 10, one can take, e.g., M = Mr = 6 × 105;
i.e., one can run about 105 times fewer trajectories than when the variance reduction
was not used (see the discussion after (4.7)). The gain of computational efficiency
is significant in spite of the fact that there is an overhead cost of solving the linear
system (4.10) in the “regression’s runs.”

Remark 4.1. In the above analysis we assumed that “regression’s runs” and
the MC runs for computing the desired value u(0, 0) are independent. In practice,
this assumption can be dropped, and we can use the same paths X(t) for both the
“regression’s runs” and the MC runs. Then, as a rule, we choose Mr ≤M.

Remark 4.2. We are expecting (see also experiments in section 4.2) that in the
general case the MC error after application of this variance reduction technique has
the form

(4.17) ρ = O

(
1√
MMr

+
hp/2

√
M

+
errB√
M

)
,

where the first term has the same nature as in this illustrative example (see (4.16));
the second term is due to the error of numerical integration (it is assumed that a
method of weak order p is used); and the third one arises as a result of the use of
a finite set of functions as the basis in the regression, while the solution u(t, x) is
usually expandable in a basis consisting of an infinite number of functions (i.e., this
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error is due to the cut-off of the basis). We note that finding an appropriate basis for
regression in applying this variance reduction approach to a particular problem can be
a difficult task and requires some knowledge of the solution u(t, x) of the considered
problem. Roughly speaking, in the proposed implementation of the variance reduction
methods (the method of importance sampling, the method of control variates, or the
combining method) we substitute the task of finding an approximate solution to the
problem of interest with the task of finding an appropriate basis for the regression.

For complicated systems of SDEs, it is preferable to use regression to approxi-
mate the solution u(t, x) and then differentiate this approximation to approximate
the derivatives ∂u/∂xi. In the case of this illustrative example we take the first three
Hermite polynomials,

(4.18) ψ1(x) = 1, ψ2(x) = 2x, ψ3(x) = 4x2 − 2,

as the basis functions for the regression. In this example the required function u(t, x)
can be expanded in the basis (4.18). We construct the estimator û(tk, x) for u(tk, x):

(4.19) û(tk, x) = α̂1(tk) + 2α̂2(tk)x+ α̂3(tk) · (4x2 − 2
)
, k = 1, . . . , N,

where α̂1(tk), α̂2(tk), α̂3(tk) satisfy the system of linear algebraic equations (2.24) with
the corresponding coefficients. Further, we approximate the derivative ∂u/∂x(tk, x),

(4.20)
∂u

∂x
(tk, x) ≈ 2α̂2(tk) + 8α̂3(tk)x,

with α̂2(tk) and α̂3(tk) from (4.19), and we define

(4.21) F̂ (t, x) := −σ (2α̂2(tk) + 8α̂3(tk)x) for t ∈ [tk−1, tk), k = 1, . . . , N,

which we use for variance reduction by putting F = F̂ in (4.5). In the experiments
we simulate (4.5) with F = F̂ (t, x) exactly (see (4.14)). The new estimator for u(0, 0)
has the form (4.15) again but with the new ZN corresponding to the choice of F̂ (t, x)
from (4.21).

Table 1

Heat equation. Simulation of u(0, 0) for σ = 1 and T = 10 by (4.15) with the corresponding
choice of the function F and for various M . The time step h = 0.1 and Mr = M . The exact value
is u(0, 0) = 10. The value after “±” equals two standard deviations of the corresponding estimator
and gives the confidence interval for the corresponding value with probability 0.95 (i.e., c = 2).

M F = 0 F = F̂ from (4.13) F = F̂ from (4.21)

103 9.67 ± 0.85 9.993 ± 0.045 9.999 ± 0.101

104 9.92 ± 0.28 9.9970 ± 0.0058 9.999 ± 0.012

105 9.970 ± 0.089 10.0000 ± 0.0003 10.0014 ± 0.0014

Table 1 gives some results of simulating u(0, 0) by (4.15) with F = 0, F = F̂ from
(4.13), and F = F̂ from (4.21). We see that for F = 0 the MC error is consistent with
(4.7); i.e., it decreases ∼ 1/

√
M. When the variance reduction is used, the results in

Table 1 approve the MC error estimate (4.16). It is quite obvious that F̂ from (4.13)
is a more accurate estimator for the exact F = −2σx than F̂ from (4.21), and then
the MC error in the first case should usually be less than in the second case, which is
observed in the experiments as well.

We also did similar experiments in the case of the terminal condition u(T, x) = x4

in (4.1). To estimate ∂u/∂x by regression, we took the basis consisting of the first
four Hermite polynomials. The results were analogous to those given above for the
case x2.
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4.2. Ergodic limit for one-dimensional array of stochastic oscillators.
Consider the one-dimensional array of oscillators [23, 19]:

dP i = −V ′(Qi) dt− λ · (2Qi −Qi+1 −Qi−1) dt− νP i dt+ σ dwi(t), P i(0) = pi,

(4.22)

dQi = P i dt, Qi(0) = qi, i = 1, . . . , n,

where periodic boundary conditions are assumed, i.e., Q0 := Qn and Qn+1 := Q1;
wi(t), i = 1, . . . , n, are independent standard Wiener processes; ν > 0 is a dissipation
parameter; λ ≥ 0 is a coupling constant; σ is the noise intensity; and V (z), z ∈ R, is
a potential.

The SDEs (4.22) are ergodic with the Gibbs invariant measure μ. We are inter-
ested in computing the average of the potential energy with respect to the invariant
measure associated with (4.22):

EμU(Q) = Eμ

n∑
i=1

(
V (Qi) +

λ

2
· (Qi −Qi+1)2

)
.

To this end (see further details in [19]), we simulate the system (4.22) on a long time
interval and approximate the ergodic limit EμU(Q) by EU(Q(T )) for a large T. To
illustrate variance reduction via regression, we simulate

(4.23) u(0, p, q) = EU(Qp,q(T )) = E [U(Qp,q(T )) + Zp,q(T )] ,

where Z(t), 0 ≤ t ≤ T, satisfies

(4.24) dZ = F�(t, P,Q)dw(t), Z(0) = 0.

We choose the n-dimensional vector function F (t, p, q) to be equal to (see (2.14))

(4.25) F i(t, p, q) = −σ ∂û
∂pi

, i = 1, . . . , n,

where û = û(t, p, q) is an approximation of the function

u(t, p, q) := EU(Qt,p,q(T )).

We simulate (4.22) using the second-order weak quasi-simplectic integrator from
[15, 16]:

P0 = p, Q0 = q ,(4.26)

P i
1,k = e−νh/2P i

k, Qi
1,k = Qi

k +
h

2
P i

1,k ,

P i
2,k = P i

1,k + h
{
−V ′(Qi

1,k) − λ · (2Qi
1,k −Qi+1

1,k −Qi−1
1,k )

}
+ h1/2σξik ,

P i
k+1 = e−νh/2P i

2,k , Qi
k+1 = Qi

1,k +
h

2
P i

2,k , i = 1, . . . , n, k = 0, . . . , N − 1 ,

where ξik are independent and identically distributed random variables with the law

(4.27) P (ξ = 0) = 2/3, P (ξ = ±
√

3) = 1/6.
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And we approximate (4.24) by the standard second-order weak method (see [16,
p. 103]):

Z0 = 0,

(4.28)

Zk+1 = Zk + h1/2
n∑

i=1

F i(tk, Pk, Qk)ξik + σh

n∑
r=1

n∑
i=1

∂

∂pi
F r(tk, Pk, Qk)ξirk

+
1
2
h3/2

n∑
i=1

LF i(tk, Pk, Qk)ξik,

ξirk =
1
2
ξikξrk − 1

2
γirζikζrk, γir =

{ −1, i < r,

1, i ≥ r ,

L :=
∂

∂t
+

1
2

n∑
i=1

n∑
j=1

∂2

∂pi∂pj
+

n∑
i=1

(−V ′(qi) − λ · (2qi − qi+1 − qi−1) − νpi
) ∂

∂pi

+
n∑

i=1

pi ∂

∂qi
,

where ξik and ζjk are mutually independent random variables, ξik are distributed by
the law (4.27), and the ζik are distributed by the law P (ζ = ±1) = 1/2.

We consider two potentials: the harmonic potential

(4.29) V (z) =
1
2
z2, z ∈ R,

and the hard anharmonic potential

(4.30) V (z) =
1
2
z2 +

1
2
z4, z ∈ R.

We define the approximation û(t, p, q) used in (4.25) at t = tk, k = 0, . . . , N − 1 ,
as follows. First, it is reasonable to put ∂û/∂pi(t, p, q) = 0 for 0 ≤ t ≤ T0 with
some relatively small T0 since for large T the function u(t, p, q), 0 ≤ t ≤ T0, is almost
constant due to the ergodicity (the expectation in (4.23) is almost independent of the
initial condition).

Further, let T0, T, h, N, and a nonnegative integer κ be such that T0 = N0h,
T = Nh, N − N0 = κN ′, where N0 and N ′ are integers. Introduce θk′ = tN0+k′

κ ,
k′ = 1, . . . , N ′.

In the case of harmonic potential the required function u(t, p, q) can be expanded
in the basis consisting of the finite number of functions

(4.31) ϕl ∈ {1, pi, qi, pipj, qiqj , piqj , i, j = 1, . . . , n}.
In our experiments we deal with three oscillators (n = 3); the basis (4.31) in this case
has 28 functions.

We use the set of functions (4.31) as a set of basis functions for regression in
both cases of harmonic and hard anharmonic potentials. Namely, using regression as
described in section 3.2, we construct the estimator û(θk′ , p, q) for u(θk′ , p, q) as

(4.32) û(θk′ , p, q) =
L∑

l=1

α̂l(θk′)ϕl(p, q),
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where ϕl are defined in (4.31) and α̂l(θk′) satisfy the system of linear algebraic equa-
tions (2.24). The matrix formed from α̂l(θk′ ) is positive definite, and we solve the
system of linear algebraic equations by Cholesky decomposition. To find the estimator
û, we use Mr independent trajectories.

Then for T0 < tk < T we put û(tk, p, q) = û(θk′ , p, q) with θk′ ≤ tk < θk′+1. The
recalculation of the estimator û once per a few number of steps κ reduces the cost of
the procedure.

We note that for the basis (4.31) the corresponding function F from (4.25) is such
that some terms in the scheme (4.28) are canceled; in particular, it is not required to
simulate the ζik in this case.

We compute u(0, p, q) in the usual way,

u(0, p, q) = E [U(Qp,q(T )) + Zp,q(T )] ≈ E [U(QN ) + ZN ](4.33)

≈ 1
M

M∑
m=1

[U(mQN ) + mZN ] ,

by simulating M independent realizations of QN , ZN from (4.26), (4.28). In these
experiments the two-run procedure described in section 3.5 was used.

Suppose we would like to compute u(0, p, q) for the particular set of parameters
n = 3, λ = 1, ν = 1, σ = 1, T = 10 and the potentials (4.29) and (4.30) with accuracy
of order 10−3. Since we are using the scheme of order two, we can take h = 0.02.

Let us first consider the case of harmonic potential (4.29). Without variance
reduction (i.e., for F = 0), we obtain 0.7500 ± 0.0010 with the fiducial probability
95% by simulating M = 1.4×106 trajectories, taking ∼541 sec on a PC. When we use
the variance reduction technique as described above, it is sufficient to take T0 = 2,
κ = 2, Mr = 2× 104, M = 3× 104 to get 0.7496± 0.0010 in ∼64 sec. In this example
the procedure with variance reduction requires an eighth of the computational time.
All the expenses are taken into account, including the time required for the first run
of the two-run procedure, which is less than 10% of the total time. We recall that
in this case the required function u(t, p, q) can be expanded in the finite basis (4.31),
unlike the case of hard anharmonic potential when such a basis is infinite.

Now consider the case of hard anharmonic potential (4.30). Without variance
reduction (i.e., for F = 0), we obtain 0.6491 ± 0.0011 with the fiducial probability
95% by simulating M = 106 trajectories, taking ∼403 sec on a PC. With variance
reduction, we reach the same level of accuracy 0.6491±0.0011 in ∼98 sec by choosing,
e.g., T0 = 2, κ = 2, Mr = 2.5×104, M = 5.5×104. Thus, the procedure with variance
reduction requires a quarter of the computational time.

Some other results of our numerical experiments are presented in Tables 2 and 3.
They show dependence of the MC error on M and Mr. The numerical integration
error is relatively small here and does not essentially affect the results. The case
Mr = 0 means that the simulation was done without variance reduction. We observe
that in both tables for a fixed Mr the MC error decreases ∼1/

√
M. Further, we see

from Table 2 that the MC error is ∼1/
√
Mr for fixed M (for Mr > 0, of course), and,

consequently, it is ∼1/
√
MMr when the variance reduction is used (we recall that the

time step is relatively small here). As noted before, the basis used in the variance
reduction is such that the function u(t, x) can be expanded in it in the case of harmonic
potential; i.e., errB in (4.17) is equal to 0. These observations are consistent with the
MC error estimate (4.17). For the anharmonic potential, errB is not equal to zero, and
we see in Table 3 that the increase ofMr has less impact on the MC error in this case.
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Table 2

Harmonic potential. Two standard deviations of the estimator (4.33) in the case of potential
(4.29) for different M and Mr. Mr = 0 means that variance reduction was not used. The other
parameters are n = 3, λ = 1, ν = 1, σ = 1, T = 10 and h = 0.01, T0 = 2, κ = 1.

Mr = 0 Mr = 103 Mr = 104 Mr = 105

M = 103 4.0 × 10−2 2.6 × 10−2 −− −−
M = 104 1.2 × 10−2 7.8 × 10−3 2.3 × 10−3 −−
M = 105 3.9 × 10−3 2.3 × 10−3 7.9 × 10−4 2.5 × 10−4

M = 106 1.2 × 10−3 8.2 × 10−4 2.4 × 10−4 7 × 10−5

Table 3

Hard anharmonic potential. Two standard deviations of the estimator (4.33) in the case of
potential (4.30) for different M and Mr. The other parameters are the same as in Table 2.

Mr = 0 Mr = 103 Mr = 104 Mr = 105

M = 103 3.3 × 10−2 2.3 × 10−2 −− −−
M = 104 1.1 × 10−2 7.4 × 10−3 3.0 × 10−3 −−
M = 105 3.5 × 10−3 2.4 × 10−3 9.5 × 10−4 6.7 × 10−4

M = 106 1.1 × 10−3 7.4 × 10−4 2.9 × 10−4 2.2 × 10−4

4.3. Pricing a binary asset-or-nothing call option. Consider the Black–
Scholes equation for pricing a binary asset-or-nothing call option:

∂u

∂t
+
ν2

2
x2 ∂

2u

∂x2
+ rx

∂u

∂x
− ru = 0, 0 ≤ t < T, x ∈ R,(4.34)

u(T, x) = f(x) =
{

0 if x < K,

x if x ≥ K.

The solution of this problem for x > 0 and K > 0 is

(4.35) u(t, x) = xΦ (y∗) ,

where

y∗ =
1

ν
√
T − t

[
ln
x

K
+
(
r +

ν2

2

)
(T − t)

]
and Φ(y) =

1√
2π

∫ y

−∞
e−z2/2dz .

The probabilistic representation (with μ = 0) of the solution to (4.34) takes the form

u(s, x) = E
[
f(Xs,x(T ))e−r(T−s) + Zs,x(T )

]
,(4.36)

dX = rXdt+ νXdw(t), X(s) = x,(4.37)

dZ = F (t,X)e−r(t−s)dw(t), Z(s) = 0.(4.38)

The purpose of this example is to illustrate that the approach to evaluating u(s, x)
introduced in section 3.2 works, in principle, in the case of discontinuous initial con-
ditions f(x). We use, as a set of basis functions for regression, the set consisting of
three functions:

ϕ1(x) =
K

π
(arctan(α(x −K)) + arctan(αK),(4.39)
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ϕ2(x) =
x

2
+

x(x − 2K)
4(
√

(x −K)2/4 + β +
√
K2/4 + β)

, ϕ3(x) =
x

γ + x2
,

where α > 0, β > 0, and γ > 0 are parameters, which can change from one time layer
to another. We note that the functions are chosen so that ϕl(0) = 0, l = 1, 2, 3, and
the payoff f(x) is well approximated by ϕ1(x) + ϕ2(x) with large α and small β.

In the experiments, we take the volatility ν = 0.2, the interest rate r = 0.02,
and the maturity time T = 3 and approximate the option price u(0, 1), whose exact
value due to (4.35) is u(0, 1) ≈ 0.635 48. We define the time-dependent α = α(t) and
β = β(t) via linear interpolation:

α(t) =
10t
T

+
0.01(T − t)

T
, β(t) =

0.0001t
T

+
0.005(T − t)

T
,

and we choose γ = 8. We simulate (4.37)–(4.38) using the weak Euler scheme with
time step h = T/N = 0.001. In the first run (see section 3.5 for the description of
the algorithm), we put F = 0 and store the values f(mX̄(T ))e−rT , which are needed
for the regression in the second run. In the second run, using regression with the
set of basis functions (4.39), we construct the estimator û(θk′ , x) for u(θk′ , x), where
θk′ = κk′h, k′ = 1, . . . , N ′; κ and N ′are nonnegative integers such that κN ′h = T .
We use here κ = 5; i.e., we recalculate the estimator û only once per five time layers to
reduce the computational cost. Further, û(tk, x) is set equal to zero for 0 ≤ tk < 0.01.
In the second run we put F (t, x) = −ν∂û/∂x. In both runs we simulate M = 4 · 104

independent trajectories. As a result, we get u(0, 1) ≈ ū(0, 1) = 0.6358± 0.0018 with
the fiducial probability 95%. To achieve a similar result without variance reduction,
namely, ū(0, 1) = 0.6342 ± 0.0019, one has to simulate M = 5 · 105 independent
trajectories, which requires at least three times more computational time than the
procedure with variance reduction. This experiment demonstrates that the simple
and cheap estimation of ∂u/∂x by ∂û/∂x works even in the case of discontinuous
initial conditions.

5. Conclusions. Starting an MC simulation, first of all we have to estimate the
number of trajectories required to reach a prescribed accuracy. Fortunately, we can
easily do this because a reliable estimate of the variance can be obtained by a prelim-
inary numerical experiment using a relatively small set of trajectories. If the required
number of trajectories is too large, we run inevitably into the problem of variance re-
duction. The known variance reduction methods (the method of importance sampling,
the method of control variates, and the combining method) are based on the assump-
tion that approximations of the solution u(t, x) of the considered problem and its spa-
tial derivatives ∂u(t, x)/∂xi are known. In this paper we proposed to construct such
approximations as a part of the MC simulation using conditional probabilistic repre-
sentations together with the regression method and thus make the variance reduction
methods practical. The basis used in the regression method can be chosen using some
a priori knowledge of the considered problems, as illustrated in the examples.

As is known (see, e.g., [16]), the variance reduction methods are applicable in the
case of boundary value problems for parabolic and elliptic equations as well. Although
here we illustrated the proposed implementation of these variance reduction methods
for the Cauchy problems for parabolic equations, the approach is straightforwardly
applicable to boundary value problems.

We also note that the proposed technique of conditional probabilistic repre-
sentations together with regression can be used for evaluating different Greeks for
American- and Bermudan-type options (see [1]).
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