Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131582
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBurmasheva, N. V.en
dc.contributor.authorProsviryakov, E. Y.en
dc.date.accessioned2024-04-08T11:08:09Z-
dc.date.available2024-04-08T11:08:09Z-
dc.date.issued2022-
dc.identifier.citationBurmasheva, NV & Prosviryakov, EY 2022, 'Influence of the Dufour Effect on Shear Thermal Diffusion Flows', Dynamics, Том. 2, № 4, стр. 367-379. https://doi.org/10.3390/dynamics2040021harvard_pure
dc.identifier.citationBurmasheva, N. V., & Prosviryakov, E. Y. (2022). Influence of the Dufour Effect on Shear Thermal Diffusion Flows. Dynamics, 2(4), 367-379. https://doi.org/10.3390/dynamics2040021apa_pure
dc.identifier.issn2673-8716-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.mdpi.com/2673-8716/2/4/21/pdf?version=16672963431
dc.identifier.otherhttps://www.mdpi.com/2673-8716/2/4/21/pdf?version=1667296343pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131582-
dc.description.abstractThe article considers thermal diffusion shear flows of a viscous incompressible fluid with spatial acceleration. The simulation uses a system of thermal diffusion equations (in the Boussinesq approximation), taking into account the Dufour effect. This system makes it possible to describe incompressible gases, for which this effect prevails, from a unified standpoint. It is shown that for shear flows, the system of equations under study is nonlinear and overdetermined. In view of the absence of a theorem on the existence and smoothness of the solution of the Navier–Stokes equation, the integration of the existing system seems to be an extremely difficult task. The article studies the question of the existence of a solution in the class of functions represented as complete linear forms in two Cartesian coordinates with non-linear (with respect to the third Cartesian coordinate) coefficients. It is shown that the system is non-trivially solvable under a certain condition (compatibility condition) constructed by the authors. The corresponding theorem is formulated and proven. These conclusions are illustrated by a comparison with the previously obtained results. © 2022 by the authors.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceDynamics2
dc.sourceDynamicsen
dc.subjectCOMPATIBILITY CONDITIONen
dc.subjectDUFOUR EFFECTen
dc.subjectEXACT SOLUTIONen
dc.subjectOVERDETERMINED SYSTEMen
dc.subjectSHEAR FLOWen
dc.subjectTHERMAL DIFFUSIONen
dc.titleInfluence of the Dufour Effect on Shear Thermal Diffusion Flowsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/dynamics2040021-
dc.identifier.scopus85172808880-
local.contributor.employeeBurmasheva N.V., Sector of Nonlinear Vortex Hydrodynamics, Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya St., Ekaterinburg, 620049, Russian Federation, Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeProsviryakov E.Y., Sector of Nonlinear Vortex Hydrodynamics, Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya St., Ekaterinburg, 620049, Russian Federation, Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russian Federationen
local.description.firstpage367-
local.description.lastpage379-
local.issue4-
local.volume2-
local.contributor.departmentSector of Nonlinear Vortex Hydrodynamics, Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya St., Ekaterinburg, 620049, Russian Federationen
local.contributor.departmentEngineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russian Federationen
local.identifier.pure50640003-
local.identifier.pure4e19f26d-1b66-4d7b-b3e1-15170bbb2f55uuid
local.identifier.eid2-s2.0-85172808880-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85172808880.pdf510,09 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons