Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/131576
Название: | On the Theory of Unsteady-State Operation of Bulk Continuous Crystallization |
Авторы: | Makoveeva, E. V. Alexandrov, D. V. Ivanov, A. A. |
Дата публикации: | 2022 |
Издатель: | MDPI |
Библиографическое описание: | Makoveeva, EV, Alexandrov, DV & Ivanov, AA 2022, 'On the Theory of Unsteady-State Operation of Bulk Continuous Crystallization', Crystals, Том. 12, № 11, 1634. https://doi.org/10.3390/cryst12111634 Makoveeva, E. V., Alexandrov, D. V., & Ivanov, A. A. (2022). On the Theory of Unsteady-State Operation of Bulk Continuous Crystallization. Crystals, 12(11), [1634]. https://doi.org/10.3390/cryst12111634 |
Аннотация: | Motivated by an important application in the chemical and pharmaceutical industries, we consider the non-stationary growth of a polydisperse ensemble of crystals in a continuous crystallizer. The mathematical model includes the effects of crystal nucleation and growth, fines dissolution, mass influx and withdrawal of product crystals. The steady- and unsteady-state solutions of kinetic and balance equations are analytically derived. The steady-state solution is found in an explicit form and describes the stationary operation mode maintained by the aforementioned effects. An approximate unsteady-state solution is found in a parametric form and describes a time-dependent crystallization scenario, which tends toward the steady-state mode when time increases. It is shown that the particle-size distribution contains kinks at the points of fines dissolution and product crystal withdrawal. Additionally, our calculations demonstrate that the unsteady-state crystal-size distribution has a bell-shaped profile that blurs with time due to the crystal growth and removal mechanisms. The analytical solutions found are the basis for investigating the dynamic stability of a continuous crystallizer. © 2022 by the authors. |
Ключевые слова: | ANALYTICAL SOLUTIONS CRYSTAL GROWTH EVOLUTION OF PARTICULATE ASSEMBLAGES MATHEMATICAL MODELING NUCLEATION |
URI: | http://elar.urfu.ru/handle/10995/131576 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/ |
Идентификатор SCOPUS: | 85149484537 |
Идентификатор WOS: | 000894366900001 |
Идентификатор PURE: | 32895156 e9bc5a88-f94c-414f-986a-f5125a382f2b |
ISSN: | 2073-4352 |
DOI: | 10.3390/cryst12111634 |
Сведения о поддержке: | Russian Science Foundation, RSF, (22-79-00141) This study was supported by the Russian Science Foundation (project number 22-79-00141). |
Карточка проекта РНФ: | 22-79-00141 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85149484537.pdf | 326,32 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons