Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131576
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMakoveeva, E. V.en
dc.contributor.authorAlexandrov, D. V.en
dc.contributor.authorIvanov, A. A.en
dc.date.accessioned2024-04-08T11:08:07Z-
dc.date.available2024-04-08T11:08:07Z-
dc.date.issued2022-
dc.identifier.citationMakoveeva, EV, Alexandrov, DV & Ivanov, AA 2022, 'On the Theory of Unsteady-State Operation of Bulk Continuous Crystallization', Crystals, Том. 12, № 11, 1634. https://doi.org/10.3390/cryst12111634harvard_pure
dc.identifier.citationMakoveeva, E. V., Alexandrov, D. V., & Ivanov, A. A. (2022). On the Theory of Unsteady-State Operation of Bulk Continuous Crystallization. Crystals, 12(11), [1634]. https://doi.org/10.3390/cryst12111634apa_pure
dc.identifier.issn2073-4352-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.mdpi.com/2073-4352/12/11/1634/pdf?version=16684075481
dc.identifier.otherhttps://www.mdpi.com/2073-4352/12/11/1634/pdf?version=1668407548pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131576-
dc.description.abstractMotivated by an important application in the chemical and pharmaceutical industries, we consider the non-stationary growth of a polydisperse ensemble of crystals in a continuous crystallizer. The mathematical model includes the effects of crystal nucleation and growth, fines dissolution, mass influx and withdrawal of product crystals. The steady- and unsteady-state solutions of kinetic and balance equations are analytically derived. The steady-state solution is found in an explicit form and describes the stationary operation mode maintained by the aforementioned effects. An approximate unsteady-state solution is found in a parametric form and describes a time-dependent crystallization scenario, which tends toward the steady-state mode when time increases. It is shown that the particle-size distribution contains kinks at the points of fines dissolution and product crystal withdrawal. Additionally, our calculations demonstrate that the unsteady-state crystal-size distribution has a bell-shaped profile that blurs with time due to the crystal growth and removal mechanisms. The analytical solutions found are the basis for investigating the dynamic stability of a continuous crystallizer. © 2022 by the authors.en
dc.description.sponsorshipRussian Science Foundation, RSF, (22-79-00141)en
dc.description.sponsorshipThis study was supported by the Russian Science Foundation (project number 22-79-00141).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.relationinfo:eu-repo/grantAgreement/RSF//22-79-00141en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceCrystals2
dc.sourceCrystalsen
dc.subjectANALYTICAL SOLUTIONSen
dc.subjectCRYSTAL GROWTHen
dc.subjectEVOLUTION OF PARTICULATE ASSEMBLAGESen
dc.subjectMATHEMATICAL MODELINGen
dc.subjectNUCLEATIONen
dc.titleOn the Theory of Unsteady-State Operation of Bulk Continuous Crystallizationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/cryst12111634-
dc.identifier.scopus85149484537-
local.contributor.employeeMakoveeva E.V., Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federation, Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeAlexandrov D.V., Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federation, Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeIvanov A.A., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.issue11-
local.volume12-
dc.identifier.wos000894366900001-
local.contributor.departmentLaboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.departmentLaboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.identifier.pure32895156-
local.identifier.puree9bc5a88-f94c-414f-986a-f5125a382f2buuid
local.description.order1634-
local.identifier.eid2-s2.0-85149484537-
local.fund.rsf22-79-00141-
local.identifier.wosWOS:000894366900001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85149484537.pdf326,32 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons