Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/131562
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Van, Bockstal, K. | en |
dc.contributor.author | Zaky, M. A. | en |
dc.contributor.author | Hendy, A. S. | en |
dc.date.accessioned | 2024-04-08T11:08:02Z | - |
dc.date.available | 2024-04-08T11:08:02Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Van Bockstal, K, Zaky, MA & Hendy, AS 2022, 'On the existence and uniqueness of solutions to a nonlinear variable order time-fractional reaction–diffusion equation with delay', Communications in Nonlinear Science and Numerical Simulation, Том. 115, 106755. https://doi.org/10.1016/j.cnsns.2022.106755 | harvard_pure |
dc.identifier.citation | Van Bockstal, K., Zaky, M. A., & Hendy, A. S. (2022). On the existence and uniqueness of solutions to a nonlinear variable order time-fractional reaction–diffusion equation with delay. Communications in Nonlinear Science and Numerical Simulation, 115, [106755]. https://doi.org/10.1016/j.cnsns.2022.106755 | apa_pure |
dc.identifier.issn | 1007-5704 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access; Green Open Access | 3 |
dc.identifier.other | https://biblio.ugent.be/publication/01GP0MQH7NMN6BF1442ECXGYPE/file/01GP0N4341T6WF2Q2EZXPS89FJ.pdf | 1 |
dc.identifier.other | https://biblio.ugent.be/publication/01GP0MQH7NMN6BF1442ECXGYPE/file/01GP0N4341T6WF2Q2EZXPS89FJ.pdf | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/131562 | - |
dc.description.abstract | In this article, our purpose is to study the existence and uniqueness of a solution to a damped variable order fractional subdiffusion equation with time delay. Under weak assumptions on the data, we prove the uniqueness of a weak solution to the problem under consideration. The method of semi-discretization is extended to this kind of time fractional parabolic problem with delay in the case that the time delay parameter s>0 satisfies s⩽T, where T denotes the final time. As a consequence, two a priori estimates are predicted based on a discrete variational formulation of the problem. The existence of the problem's weak solution on the time frame 0,⌊[Formula presented]⌋s is established by the aid of these derived a priori estimates. The paper is closed by introducing a fully discrete scheme based on Galerkin Legendre spectral approximation for the spatial operator and the backward Euler difference approximation for the temporal variable order operator. Accordingly, the accuracy and efficiency of the proposed scheme are justified by giving some numerical experiments for the sake of clearness. © 2022 Elsevier B.V. | en |
dc.description.sponsorship | National Research Centre, NRC | en |
dc.description.sponsorship | Fonds Wetenschappelijk Onderzoek, FWO, (106016/12P2919N) | en |
dc.description.sponsorship | Russian Science Foundation, RSF, (22-21-00075) | en |
dc.description.sponsorship | K. Van Bockstal is supported by a postdoctoral fellowship of the Research Foundation - Flanders ( 106016/12P2919N ). Ahmed S. Hendy wishes to acknowledge the support of the RSF grant, project 22-21-00075 . Mahmoud A. Zaky wishes to acknowledge the support of the National Research Centre of Egypt (NRC) . | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier B.V. | en |
dc.relation | info:eu-repo/grantAgreement/RSF//22-21-00075 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Communications in Nonlinear Science and Numerical Simulation | 2 |
dc.source | Communications in Nonlinear Science and Numerical Simulation | en |
dc.subject | A PRIORI ESTIMATES | en |
dc.subject | EXISTENCE | en |
dc.subject | ROTHE'S METHOD | en |
dc.subject | TIME DELAY | en |
dc.subject | UNIQUENESS | en |
dc.subject | VARIABLE ORDER SUBDIFFUSION | en |
dc.subject | NONLINEAR EQUATIONS | en |
dc.subject | PARTIAL DIFFERENTIAL EQUATIONS | en |
dc.subject | TIMING CIRCUITS | en |
dc.subject | A-PRIORI ESTIMATES | en |
dc.subject | EXISTENCE | en |
dc.subject | EXISTENCE AND UNIQUENESS OF SOLUTION | en |
dc.subject | ROTHE METHOD | en |
dc.subject | SUBDIFFUSION | en |
dc.subject | TIME-DELAYS | en |
dc.subject | UNIQUENESS | en |
dc.subject | VARIABLE ORDER SUBDIFFUSION | en |
dc.subject | VARIABLES ORDERING | en |
dc.subject | WEAK SOLUTION | en |
dc.subject | TIME DELAY | en |
dc.title | On the existence and uniqueness of solutions to a nonlinear variable order time-fractional reaction–diffusion equation with delay | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1016/j.cnsns.2022.106755 | - |
dc.identifier.scopus | 85135904895 | - |
local.contributor.employee | Van Bockstal K., , Department of Electronics and Information systems, Ghent University, Krijgslaan 281, Ghent, 9000, Belgium | en |
local.contributor.employee | Zaky M.A., Department of Applied Mathematics, National Research Centre, Dokki, Giza, 12622, Egypt | en |
local.contributor.employee | Hendy A.S., Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation, Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypt | en |
local.volume | 115 | - |
dc.identifier.wos | 000848354500007 | - |
local.contributor.department | Department of Electronics and Information systems, Ghent University, Krijgslaan 281, Ghent, 9000, Belgium | en |
local.contributor.department | Department of Applied Mathematics, National Research Centre, Dokki, Giza, 12622, Egypt | en |
local.contributor.department | Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation | en |
local.contributor.department | Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypt | en |
local.identifier.pure | 30747446 | - |
local.identifier.pure | 3c03bc44-d46c-4f2b-bd70-6ca07ab51ac3 | uuid |
local.description.order | 106755 | - |
local.identifier.eid | 2-s2.0-85135904895 | - |
local.fund.rsf | 22-21-00075 | - |
local.identifier.wos | WOS:000848354500007 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85135904895.pdf | 339,9 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.