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Abstract

In this article, our purpose is to study the existence and uniqueness of a solution to a damped variable order fractional

subdiffusion equation with time delay. Under weak assumptions on the data, we prove the uniqueness of a weak

solution to the problem under consideration. The method of semi-discretization is extended to this kind of time

fractional parabolic problem with delay in the case that the time delay parameter s > 0 satisfies s 6 T , where

T denotes the final time. As a consequence, two a priori estimates are predicted based on a discrete variational

formulation of the problem. The existence of the problem’s weak solution on the time frame
[
0, bT

s
cs
]

is established

by the aid of these derived a priori estimates. The paper is closed by introducing a fully discrete scheme based on

Galerkin Legendre spectral approximation for the spatial operator and the backward Euler difference approximation

for the temporal variable order operator. Accordingly, the accuracy and efficiency of the proposed scheme are justified

by giving some numerical experiments for the sake of clearness.

Keywords: Variable order subdiffusion, Time delay, Uniqueness, Existence, A priori estimates, Rothe’s method

1. Introduction

1.1. Problem formulation

The following nonlinear variable order time-fractional reaction-diffusion equation with delay is under considera-

tion

∂β(t)u

∂tβ(t)
(x, t)+λ

∂u

∂t
(x, t) = κ∆u(x, t)+f(u(x, t), u(x, t−s))+g(x, t), 0 < β(t) < β̄ < 1, x ∈ Ω, t ∈ I, (1.1)
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such that Ω ⊂ Rd, d ∈ N, is a bounded Lipschitz domain with boundary ∂Ω. The problem is endowed with initial-

boundary conditions of the form  u(x, t) = ψ(x, t), x ∈ Ω, t ∈ [−s, 0],

u(x, t) = 0, (x, t) ∈ ∂Ω× I,
(1.2)

where I = (0, T ] ⊂ R is the time domain. The diffusion coefficient κ, the damping coefficient λ and the delay

parameter s are strict positive constants. The variable-order fractional integral operator 0I
β(t)
t , and the variable-order

fractional Caputo operator ∂β(t)

∂tβ(t)
involve the memory of its order history and are defined by the following [1, 2, 3]

0I
β(t)
t u(t) :=

∫ t

0

1

Γ (β(t− r))
u(r)

(t− r)1−β(t−r) dr,

∂β(t)

∂tβ(t)
u(t) := 0I

1−β(t)
t u′(t) =

∫ t

0

1

Γ (1− β(t− r))
u′(r)

(t− r)β(t−r) dr. (1.3)

1.2. Literature overview

The first time that a variable order fractional differential derivative appeared as a generalization of a constant order

fractional differential operator was in an article of Samko and Ross in 1993 [4]. An employment of fractional partial

differential equations (FPDEs) with variable orders have been encountered in different physical and dynamical systems

[5, 6]. A successful application of variable order differential operators to a wide range of real-world problems has been

verified due to the ability of constructing governing equations of evolutionary type [7]. These applications have been

efficiently used in fields of science in which investigating memory properties that vary in time and space is needed, as

in mechanics, transport processes, control theory and biology [6, 8]. New difficulties from mathematical, numerical

and computational viewpoint raised up when dealing with FPDEs. For example, an exhibition of singularity near the

initial time is noticed for the first-order time derivative of the solutions to the time-fractional diffusion equations. This

weakly singularity gives an evidence that the error estimates in the literature are inappropriate if their proofs were

done under full regularity assumptions of the true solutions, which is discussed in e.g. [9, 10]. Numerical analysis

for nonlinear FPDEs with a fixed and functional delay has been investigated by using novel techniques of discrete

fractional Grönwall inequalities and discrete energy estimates, see e.g. [11, 12].According to the works [13, 14], the

root of occurrence of solutions with non-physical sense for constant order FPDEs near t = 0 comes out from the

incompatibility between the non-locality of the governing FPDEs (of the power-law decaying tails) and the locality

of the initial conditions, respectively. Elimination of that non-physical singularity can be done as in [14] if we use

FPDEs in which the order varies smoothly to an integer value at t = 0. It can be clearly noticed in the literature

that variable-order FPDEs arise in many applications, as in [2, 15, 8] in which the variable order indicates the fractal

dimension of the porous media. Different numerical approximations were developed and analyzed for FPDEs, see

[16, 17, 18, 19, 15, 20, 21]. Well-posedness results for time-dependent variable order problems where the derivative

order has not the memory of its history can be found in e.g. [22, 23, 14, 24, 25], whilst for a variable order FPDEs

with hidden memory we refer to [26]. All these contributions consider linear sources and do not consider time delay.
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Rothe’s method (which is also called the method of semi-discretization in time) was initially developed as a dis-

cretization method in time for partial differential equations [27, 28]. The work in [29] introduced Rothe’s method

as an accurate theoretical tool for solving a wide scale of evolution problems. A theoretical and numerical treatment

of initial boundary value problems of parabolic type with Volterra operators was constructed in [30], endowed by an

integro-differential equation and a natural boundary condition. A constructive proof of the uniqueness and existence

of its variational solution under weak assumptions on the data was done by invoking Rothe’s method. We also give

some recent well-posedness results illustrating the importance of this method. In [31], the authors study the existence

and uniqueness of a solution to anisotropic thermoelastic systems. A consideration of a weak solution for a fractional

order diffusion equation with Volterra differential operator and with fractional integral condition is shown in [32]. It

has been proved that the solution existed and was unique as well as its regularity by designing an appropriate Rothe

scheme. Recently, the paper [33] studies analytically and numerically a Rothe-Galerkin finite element method for

approximating the solutions of a Boussinesq-type system to model water wave propagation over a time-dependent

variable topography. Moreover, in [34], the author studied the well-posedness of a fractional diffusion equation with

space-dependent variable order with the aid of Rothe’s method.

1.3. Outline

Throughout the paper, it is assumed that β(t) is chosen such that the corresponding convolution kernel is positive

definite (the structure of (1.3) makes this possible) and we take advantage of this structure. For more details, see

the beginning of Section 2, where all assumptions on the data are listed, and the weak formulation is formulated.

Afterwards, the uniqueness of a solution to problem (1.1-1.2) is discussed in Theorem 2.1. Note that the variable-

order fractional Caputo operator involves the memory of its order history, and that the positive definiteness of the

governing integral kernel is crucial here. Next, in Section 3 the local existence of a solution is shown by the aid of

Rothe’s method. We note that it is common practice in problems with delay to discretize first the interval [−s, 0] by

using a uniform time mesh [35]. To be able to apply Rothe’s method, we need to restrict the time frame to [0, T0] with

T0 := bTs cs assuming s 6 T . To the best of our knowledge, it is the first time that this approach has been considered.

Then, the existence of a solution to problem (1.1-1.2) on [0, T0] is established in Theorem 3.1. It is clear that the

existence of a solution is global if Ts ∈ N. This result builds on the weakly positivity of the time-discrete convolution

[36], which leads to the derivation of two a priori estimates from which we can deduce the existence of a solution.

Two important remarks are formulated at the end of the section. For instance, the advantage of our method is that the

results can be extended to time-dependent elliptic operators. Finally, Section 4 is devoted to discretize the problem in

space direction in terms of Galerkin Legendre spectral scheme and give two examples those illustrate the convergence

of the proposed scheme.
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2. Uniqueness of a solution

Firstly, the uniqueness of the weak solution will be shown for the problem (1.1-1.2). Before stating the variational

formulation, we introduce the following notation for the integral kernel in (1.3):

k(t) =
t−β(t)

Γ(1− β(t))
, t > 0.

Then, (1.3) can be rewritten as
∂β(t)

∂tβ(t)
u(t) = (k ∗ ∂tu)(t),

where the symbol ‘∗’ stands for the convolution product defined by (k ∗ z) (t) =
∫ t

0
k(t− s)z(s) ds.

Further, we make the following assumptions

• (AS1): β ∈ C([0, T ]) with 0 < β(t) 6 β̄ < 1 is to be chosen such that k ∈ L1(0, T ) with ∂tk, ∂ttk ∈ L1
loc(0, T )

satisfies

|k(t)| 6 Ct−β̄ , ∀t > 0,

and

(−1)jk(j)(t) > 0, ∀t > 0; j = 0, 1, 2; k′ 6= 0;

• (AS2): ψ ∈ C
(
[−s, 0],L2(Ω)

)
with ψ(0) ∈ H1

0(Ω);

• (AS3): g ∈ C
(
[0, T ],L2(Ω)

)
;

• (AS4): f : R× R→ R is globally Lipschitz continuous, i.e. there exists a constant L > 0 such that

|f(u1, v1)− f(u2, v2)| 6 L (|u1 − u2|+ |v1 − v2|) . (2.4)

The (AS1) clears the strongly positive definiteness of the kernel k [37, Corollary 2.2], i.e.∫ t

0

〈(k ∗ z) (r), z(r)〉X dr > 0, t > 0, ∀z ∈ L2
loc ((0,∞), X) ,

with X be a real Hilbert space with scalar product 〈·, ·〉X and L2
loc ((0,∞), X) the space of functions belonging to

L2 ((0, T ), X) for any T ∈ (0,∞).

The variational formulation of (1.1-1.2) is given by

search u ∈ C
(
[−s, T ],L2(Ω)

)
∩ L2

(
(0, T ),H1

0(Ω)
)

with ∂tu ∈ L2
(
(0, T ),L2(Ω)

)
such that for a.a. t ∈ (0, T ) and ∀ϕ ∈ H1

0(Ω) it holds that

((k ∗ ∂tu)(t), ϕ) + λ (∂tu(t), ϕ) + κ (∇u(t),∇ϕ) = (f (u(t), u(t− s)) , ϕ) + (g(t), ϕ) , (2.5)

where

u(t) = ψ(t) in L2(Ω) for all t ∈ [−s, 0].
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Note that (·, ·) represents the standard inner product in L2(Ω). Its induced norm will be denoted by ‖·‖. From Young’s

inequality for convolutions

‖f1 ∗ f2‖Lr(0,T ) 6 ‖f1‖Lp(0,T ) ‖f2‖Lq(0,T ) for
1

p
+

1

q
=

1

r
+ 1 with 1 6 p, q 6 r 6∞,

it follows that

‖k ∗ (z, ϕ)‖L2(0,T ) 6 ‖k‖L1(0,T ) ‖ϕ‖ ‖z‖L2((0,T ),L2(Ω)) <∞, ∀{z, ϕ} ∈ L2
(
(0, T ),L2(Ω)

)
× L2(Ω), (2.6)

and

‖k ∗ z‖L2((0,T ),L2(Ω)) 6 ‖k‖L1(0,T ) ‖z‖L2((0,T ),L2(Ω)) <∞, ∀z ∈ L2
(
(0, T ),L2(Ω)

)
.

Moreover, for completeness, we state the following lemma, which is crucial in the uniqueness theorem. It is an

extension of the following result obtained from e.g. [38, Lemma 2.1]: let u be absolutely continuous on [0, T ] and

consider gβ(t) := t−β

Γ(1−β) with β ∈ (0, 1), then

∂t(gβ ∗ u)(t) = gβ(t)u(0) + (gβ ∗ ∂tu)(t).

Lemma 2.1. Assume that 0 ≤ g ∈ L1(0, T ) satisfies ∂tg ∈ L1
loc(0, T ) with ∂tg 6 0 on (0, T ). Let u ∈ H1,∞(0, T ).

Then, for any t ∈ (0, T ), it holds that

∂t(g ∗ u)(t) = g(t)u(0) + (g ∗ ∂tu)(t).

Proof. The function g is continuous on (0, T ) as ∂tg ∈ L1
loc(0, T ). Hence, the function g can only have a singularity

at t = 0 as it is decreasing. If g ∈ C([0, T ]), then the result follows immediately from the Leibniz integral rule. If g

has a singularity at t = 0, then we consider a sequence of cutoff functions (n ∈ N) defined by gn(t) := min{n, g(t)}

for t ∈ [0, T ]. Then, we have that gn 6 g on (0, T ) for all n ∈ N, and gn(t) → g(t) for t ∈ (0, T ) as n → ∞. As

∂tu ∈ L∞(0, T ) ⊂ L1(0, T ), we have that

(gn ∗ u)(t) = u0

∫ t

0

gn(s) ds+

∫ t

0

gn(s)

∫ t−s

0

∂tu(τ) dτ ds. (2.7)

Next, we pass to the limit n → ∞ in (2.7). Applying the monotone convergence theorem for the integral on the LHS

and the first integral on the RHS (note that u ∈ C ([0, T ])), we obtain that

(g ∗ u)(t) = u0

∫ t

0

g(s) ds+ lim
n→∞

∫ t

0

gn(s)

∫ t−s

0

∂tu(τ) dτ ds.

Then, differentiating with respect to t gives

∂t(g ∗ u)(t) = u0g(t) + ∂t lim
n→∞

∫ t

0

gn(s)

∫ t−s

0

∂tu(τ) dτ ds.
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Using ∂t
∫ t−s

0
∂tu(τ) dτ = ∂t−s

∫ t−s
0

∂tu(τ) dτ = ∂tu(t− s), we notice by the Leibniz integral rule that

∂t

∫ t

0

gn(s)

∫ t−s

0

∂tu(τ) dτ ds

= 1 · gn(t)

∫ 0

0

∂tu(τ) dτ − 0 · gn(0)

∫ t

0

∂tu(τ) dτ +

∫ t

0

gn(s)∂tu(t− s) ds

=

∫ t

0

gn(s)∂tu(t− s) ds.

We have by [39, Theorem 7.17] that

∂t lim
n→∞

∫ t

0

gn(s)

∫ t−s

0

∂tu(τ) dτ ds = lim
n→∞

∂t

∫ t

0

gn(s)

∫ t−s

0

∂tu(τ) dτ ds,

since ∣∣∣∣∫ t

0

gn(s)∂tu(t− s) ds−
∫ t

0

g(s)∂tu(t− s) ds

∣∣∣∣ ≤ ‖∂tu‖L∞(0,T )

∫ T

0

(g(s)− gn(s)) ds

converges uniformly to 0 (independently of t ∈ [0, T ]) by the monotone convergence theorem. Therefore, we have

that

∂t lim
n→∞

∫ t

0

gn(s)

∫ t−s

0

∂tu(τ) dτ ds =

∫ t

0

g(s)∂tu(t− s) ds,

which concludes the proof.

Now, we are ready to show the uniqueness of a weak solution to problem (1.1)-(1.2) by contradiction.

Theorem 2.1 (Uniqueness).

Let the assumptions (AS1-AS4) be fulfilled. Then, the solution to problem (2.5) satisfying u ∈ C
(
[−s, T ],L2(Ω)

)
∩

L2
(
(0, T ),H1

0(Ω)
)

with ∂tu ∈ L∞
(
(0, T ),L2(Ω)

)
is unique.

Proof. Assume the existence of two solutions u1 and u2 to solve (2.5). Then, the difference u := u1 − u2 fulfills

u(·, t) = 0 in Ω for t ∈ [−s, 0] and

((k ∗ ∂tu)(t), ϕ) +λ (∂tu(t), ϕ) +κ (∇u(t),∇ϕ) = (f (u1(t), u1(t− s))− f (u2(t), u2(t− s)) , ϕ) , ∀ϕ ∈ H1
0(Ω).

Note that (k ∗ ∂tu)(t) = ∂t(k ∗u)(t) by applying Lemma 2.1 with g = k. Now, we integrate with respect to time over

t ∈ (0, η) ⊂ (0, T ), take ϕ = u(η) and integrate again with respect to time over η ∈ (0, ξ) ⊂ (0, T ). We obtain that

∫ ξ

0

((k ∗ u)(η), u(η)) dη + λ

∫ ξ

0

‖u(η)‖2 dη +
κ

2

∥∥∥∥∥
∫ ξ

0

∇u(t) dt

∥∥∥∥∥
2

=

∫ ξ

0

(∫ η

0

[f (u1(t), u1(t− s))− f (u2(t), u2(t− s))] dt, u(η)

)
dη. (2.8)

The strongly positive definiteness of k implies that the first term on the left-hand side (LHS) is positive. Using the

ε-Young inequality and the global Lipschitz continuity of f , we make the following deduction for the term on the
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right-hand side (RHS) ∣∣∣∣∣
∫ ξ

0

(∫ η

0

[f (u1(t), u1(t− s))− f (u2(t), u2(t− s))] dt, u(η)

)
dη

∣∣∣∣∣
6 Cε

∫ ξ

0

(∫ η

0

(
‖u(t)‖2 + ‖u(t− s)‖2

)
dt

)
dη + ε

∫ ξ

0

‖u(η)‖2 dη

6 Cε

∫ ξ

0

(∫ η

0

‖u(t)‖2 dt

)
dη + ε

∫ ξ

0

‖u(η)‖2 dη

as u(·, t) = 0 in Ω for t ∈ [−s, 0]. Therefore, from (2.8), we get that

(λ− ε)
∫ ξ

0

‖u(η)‖2 dη +
κ

2

∥∥∥∥∥
∫ ξ

0

∇u(t) dt

∥∥∥∥∥
2

6 Cε

∫ ξ

0

(∫ η

0

‖u(t)‖2 dt

)
dη.

Next, we fix ε such that ε < λ and apply the Grönwall lemma to obtain that u = 0 a.e. in Ω× (0, T ).

3. Local existence of a solution if s 6 T

Rothe’s method is utilized to show the existence of a solution. First, the time interval [−s, 0] is discretized by a

time step τ < min{1, s} defined by τ = s
N where N is a positive integer. Next, we define

T0 := bT
s
cs.

We will show the existence of a solution on the time interval [0, T0]. The time discrete points are given by ti =

iτ, ∀ − N ≤ i ≤ M, where M = T0

τ = bT
s
cN. The ui denotes the approximate solution at time t = ti for

−N ≤ i ≤M . The backward Euler difference ∂tz(ti) ≈ δzi := zi−zi−1

τ is used to approximate the time derivative at

time t = ti for 1 6 i 6M . The time-discrete convolution is defined as (see [36])

(k ∗ z)(ti) =

i∑
l=1

∫ tl

tl−1

(ti − r)−β(ti−r)

Γ (1− β(ti − r))
z(r) dr ≈ (k ∗ z)i :=

i∑
l=1

ki+1−lzlτ, 1 ≤ i ≤M. (3.9)

Note that

(k ∗ δu)(ti) ≈
i∑
l=1

ai−l (ul − ul−1) =

i∑
l=0

bi−lul, (3.10)

where al = kl+1 and b0 = a0, bi = −ai−1, bi−l = ai−l − ai−l−1, for l = 1, . . . , i− 1.

Then, the problem (2.5) is approximated at time t = ti for 1 6 i 6M as follows:

Find ui ∈ H1
0(Ω) such that

((k ∗ δu)i, ϕ) + λ (δui, ϕ) + κ (∇ui,∇ϕ) = (f (ui−1, ui−N ) , ϕ) + (gi, ϕ) , ∀ϕ ∈ H1
0(Ω), (3.11)

where

ui = ψi for −N 6 i 6 0.
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Now, the existence of a unique solution at every time step comes out by Lax-Milgram lemma.

Lemma 3.1. Let the assumptions (AS1-AS4) be fulfilled. Then, for any i = 1, 2, . . . ,M , there exists a unique function

ui ∈ H1
0(Ω) solving (3.11).

Next, we derive two a priori estimates, which will be crucial for showing the existence later.

Lemma 3.2. Assuming the achievement of (AS1-AS4) and s 6 T . Then, the existence of constants C > 0 and τ0 > 0

is guaranteed such that ∀j = 1, 2, . . . ,M and τ < τ0, the inequality below is fulfilled

j∑
i=1

‖δui‖2 τ + ‖∇uj‖2 +

j∑
i=1

‖∇ui −∇ui−1‖2 6 C.

Proof. Taking ϕ = δuiτ in (3.11) and summing up for i = 1, . . . , j with 1 6 j 6M , i.e.

j∑
i=1

(
i∑
l=1

ki−l+1δulτ, δui

)
τ + λ

j∑
i=1

‖δui‖2 τ + κ

j∑
i=1

(∇ui,∇δui) τ

=

j∑
i=1

(f (ui−1, ui−N ) , δui) τ +

j∑
i=1

(gi, δui) τ. (3.12)

The positivity of the first term on the left-hand side (LHS) of (3.12) is due to the positive definiteness of the kernel k,

see [36, Eq. 3.2]. Form Abel’s summation rule, we get that

κ

j∑
i=1

(∇ui,∇δui) τ =
κ

2
‖∇uj‖2 −

κ

2
‖∇ψ0‖2 +

κ

2

j∑
i=1

‖∇ui −∇ui−1‖2 .

Using the ε-Young inequality, we easily see that∣∣∣∣∣
j∑
i=1

(gi, δui) τ

∣∣∣∣∣ 6 Cε + ε

j∑
i=1

‖δui‖2 τ.

Next, we estimate the first term on the right-hand side (RHS) of (3.12). Employing (AS2), (AS4) and ui = u0 +∑i
l=1 δulτ , this yields∣∣∣∣∣

j∑
i=1

(f (ui−1, ui−N ) , δui) τ

∣∣∣∣∣ 6 Cε

j∑
i=1

(
1 + ‖ui−1‖2 + ‖ui−N‖2

)
τ + ε

j∑
i=1

‖δui‖2 τ

6 Cε

(
1 +

0∑
i=1−N

‖ψi‖2 τ

)
+ Cε

j−1∑
i=1

‖ui‖2 τ + ε

j∑
i=1

‖δui‖2 τ

6 Cε + Cε

j−1∑
i=1

(
i∑
l=1

‖δul‖2 τ

)
τ + ε

j∑
i=1

‖δui‖2 τ.

Hence, from equation (3.12), we get that

(λ− ε)
j∑
i=1

‖δui‖2 τ +
κ

2
‖∇uj‖2 +

κ

2

j∑
i=1

‖∇ui −∇ui−1‖2 6 Cε + Cε

j−1∑
i=1

(
i∑
l=1

‖δul‖2 τ

)
τ.

Finally, we fix ε < λ and apply the Grönwall lemma to conclude the proof.
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Lemma 3.3. Let the assumptions (AS1-AS4) be fulfilled and s 6 T . Then, there exist constants C > 0 and τ0 > 0

such that ∀j = 1, 2, . . . ,M and τ < τ0, we gain

|(δuj , ϕ)| 6 C ‖ϕ‖H1(Ω) , ∀ϕ ∈ H1
0(Ω).

Proof. From (3.11) and Lemma 3.2 it follows that

|(δui, ϕ)| (3.11)
=

1

λ

∣∣∣∣∣(f (ui−1, ui−N ) , ϕ) + (gi, ϕ)− κ (∇ui,∇ϕ)−

(
i∑
l=1

ki−l+1δulτ, ϕ

)∣∣∣∣∣
6 C ‖ϕ‖H1(Ω) +

1

λ

i∑
l=1

ki−l+1 |(δul, ϕ)| τ.

According to (AS1), we have that k(τ)τ → 0 as τ >→ 0. Therefore,

|(δui, ϕ)| 6 C

[
‖ϕ‖H1(Ω) +

i−1∑
l=1

ki−l+1 |(δul, ϕ)| τ

]
.

Moreover, from (AS1), we see that ki−l+1 6 ki−l for l = 1, . . . , i− 1 and thus

|(δui, ϕ)| 6 C

[
‖ϕ‖H1(Ω) +

i−1∑
l=1

(ti − tl)−β̄ |(δul, ϕ)| τ

]
.

Hence, the result follows from [40, Lemma 5].

Now, the solutions on the single time steps are prolonged on the whole time frame as follows

UN : [0, T0]→ L2(Ω) : t 7→

ψ(t) t ∈ [−s, 0],

ui−1 + (t− ti−1)δui t ∈ (ti−1, ti], 1 6 i 6M ;

UN : [0, T0]→ L2(Ω) : t 7→

ψ(t) t ∈ [−s, 0],

ui t ∈ (ti−1, ti], 1 6 i 6M.

The KN and GN function can be defined in the same manner. Using these functions and the notation dteτ = ti for

t ∈ (ti−1, ti], we rewrite (3.11) on (0, T0] as(∫ dteτ
0

KN (dteτ + τ − r)∂rUN (r) dr, ϕ

)
+ λ (∂tUN (t), ϕ) + κ

(
∇UN (t),∇ϕ

)
=
(
f
(
UN (t− τ), UN (t− s)

)
, ϕ
)

+
(
GN (t), ϕ

)
, ∀ϕ ∈ H1

0(Ω). (3.13)

We show the existence of a solution on (0, T0) in the next theorem by passing to the limit N → ∞ (and thus τ → 0

and hence M →∞).

Theorem 3.1 (Existence). Let the assumptions (AS1-AS4) be fulfilled and s 6 T . Then, a unique solution u exists to

(2.5) on the time frame [0, T0] satisfying

u ∈ C
(
[−s, T0],L2(Ω)

)
∩ L∞

(
(0, T0),H1

0(Ω)
)
, ∂tu ∈ L2

(
(0, T0),L2(Ω)

)
.
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Proof. Lemma 3.2 implies for all N > N0 > 0 that

max
t∈[0,T0]

∥∥UN (t)
∥∥2

H1
0(Ω)

+

∫ T0

0

‖∂tUN (t)‖2 dt 6 C.

As H1
0(Ω) ↪→↪→ L2(Ω) (see [41, Theorem 6.6-3]), invoking [28, Lemma 1.3.13] leads to the existence of a function

u ∈ C
(
[0, T0],L2(Ω)

)
∩ L∞

(
(0, T0),H1

0(Ω)
)

and a subsequence {UNl}l∈N of {UN} such that

UNl → u in C
(
[0, T0],L2(Ω)

)
,

UNl(t) ⇀ u(t) in H1
0(Ω), ∀t ∈ [0, T0],

UNl(t) ⇀ u(t) in H1
0(Ω), ∀t ∈ [0, T0],

∂tUNl ⇀ ∂tu in L2
(
(0, T0),L2(Ω)

)
.

From Lemma 3.2, we also have that (note that τ = s/Nl here and further)∫ T0

0

∥∥UNl(t)− UNl(t)∥∥2
dt+

∫ T0

0

∥∥UNl(t− τ)− UNl(t)
∥∥2

dt 6 2τ2
Ml∑
i=1

‖δui‖2 τ 6 Cτ2, (3.14)

so UNl → u and UNl(·−τ)→ u in L2
(
(0, T0),L2(Ω)

)
as l→∞. Moreover, as u(0) = ψ(0) and UNl(t) = ψ(t) for

t ∈ [−s, 0] with ψ ∈ C
(
[−s, 0],L2(Ω)

)
, we can extend u continuously to [−s, T0] in L2(Ω) by defining u(t) = ψ(t)

for t ∈ [−s, 0]. Then,∫ T0

−s

∥∥UNl(t)− u(t)
∥∥2

dt =

∫ T0

0

∥∥UNl(t)− u(t)
∥∥2

dt→ 0 as l→∞. (3.15)

Now, we integrate (3.13) for N = Nl over t ∈ (0, η) ⊂ (0, T0) to obtain that

∫ η

0

(∫ dteτ
0

KNl(dteτ + τ − r)∂rUNl(r) dr, ϕ

)
dt+ λ

∫ η

0

(∂tUNl(t), ϕ) dt+ κ

∫ η

0

(
∇UNl(t),∇ϕ

)
dt

=

∫ η

0

(
f
(
UNl(t− τ), UNl(t− s)

)
, ϕ
)

dt+

∫ η

0

(
GNl(t), ϕ

)
dt, ∀ϕ ∈ H1

0(Ω). (3.16)

For the 1.st term in the LHS of (3.16), we can write

L1 :=

∫ η

0

(∫ dteτ
0

KNl(dteτ + τ − r)∂rUNl(r) dr, ϕ

)
dt = T1 + T2 + T3 + T4,

where

T1 :=

∫ η

0

(∫ dteτ
t

KNl(dteτ + τ − r)∂rUNl(r) dr, ϕ

)
dt,

T2 :=

∫ η

0

(∫ t

0

KNl(dteτ + τ − r)∂rUNl(r) dr − (k ∗ ∂tuNl)(t), ϕ
)

dt,

T3 :=

∫ η

0

((k ∗ ∂tuNl)(t)− (k ∗ ∂tu)(t), ϕ) dt,

T4 :=

∫ η

0

((k ∗ ∂tu)(t), ϕ) dt.
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From Lemma 3.3, we have for t ∈ (ti−1, ti] that∣∣∣∣∣
∫ dteτ
t

KNl(dteτ + τ − r) (∂rUNl(r), ϕ) dr

∣∣∣∣∣ 6 C ‖ϕ‖H1(Ω)

∫ ti

t

KNl(ti + τ − r) dr

6 C ‖ϕ‖H1(Ω) k(τ)τ
l→∞−→ 0, ∀ϕ ∈ H1

0(Ω).

Hence, |T1| → 0 as l→∞. Analogously, by the Lebesgue dominated theorem (since KNl → k point-wise on (0, T0)

as l→∞), we obtain for t ∈ (ti−1, ti] that∣∣∣∣∫ t

0

[
KNl(dteτ + τ − r)− k(t− r)

]
(∂rUNl(r), ϕ) dr

∣∣∣∣
6 C ‖ϕ‖H1(Ω)

∫ t

0

∣∣KNl(ti + τ − r)− k(t− r)
∣∣dr l→∞−→ 0,

i.e. |T2| → 0 as l → ∞. From (2.6) and ∂tUNl ⇀ ∂tu in L2
(
(0, T0),L2(Ω)

)
, this yields T3 → 0 as l → ∞.

Therefore, we get that L1 → T4 as l → ∞. Next, from (3.14) and (3.15), we obtain for the first term on the RHS of

(3.16) that ∫ η

0

(
f
(
UNl(t− τ), UNl(t− s)

)
, ϕ
)

dt
l→∞−→

∫ η

0

(f (u(t), u(t− s)) , ϕ) dt.

The limit transition of the remaining terms in (3.16) follows from UNl(t) ⇀ u(t) in H1
0(Ω), ∂tUNl ⇀ ∂tu in

L2
(
(0, T0),L2(Ω)

)
and GNl → g a.e. in ∂Ω× (0, T0). Consequently, passing to the limit l→∞, we arrive at∫ η

0

((k ∗ ∂tu)(t), ϕ) dt+ λ

∫ η

0

(∂tu(t), ϕ) dt+

∫ η

0

κ (∇u(t),∇ϕ) dt

=

∫ η

0

(f (u(t), u(t− s)) , ϕ) dt+

∫ η

0

(g(t), ϕ) dt.

Differentiating this result with respect to η gives that u solves (2.5).

Remark 3.1. Theorem 3.1 stays valid when the second order differential operator L = −κ∆u is replaced by the more

general operator

L(x, t)u(x, t) = −∇ · (A(x, t)∇u(x, t) + b(x, t)u(x, t)) + c(x, t)u(x, t),

with

• A ∈
(
L∞

(
QT
))d×d

is uniformly elliptic with ellipticity constant α, AT = A and ∂tA ∈
(
L∞

(
QT
))d×d

;

• b ∈
(
L∞

(
QT
))d

with ∂tb ∈
(
L∞

(
QT
))d

and (∇ · b)(t) ∈ L∞(Ω) for all t ∈ (0, T );

• c ∈ L∞
(
QT
)

such that c >
‖b‖2

L∞(QT )
2α .

We refer to [42] for more details.

Remark 3.2. The existence and uniqueness of a solution to problem (1.1-1.2) without delay (i.e. s = 0) can be shown

as above by discretizing the time frame [0, T ]. The results above stay valid with T0 replaced by T.

11



4. Rothe-Galerkin spectral method

The problem is semi-discretized in time direction by Rothe method as shown in (3.11). In order to define the

spatial approximations based on Legendre Galerkin spectral method, we here introduce some fundamental properties

of Jacobi polynomials. Their importance in spectral methods arise from the nature of Jacobi weights, which are tied

to the singular kernels of time Caputo fractional derivatives of order 0 < β < 1. Denote P γ,ςq (x), γ, ς > −1 as the

q-th order Jacobi polynomial of index γ, ς defined on [−1, 1]. As all classical orthogonal polynomials, {P γ,ςq (x)}Nq=0

satisfies the following three-term-recurrence relation
P γ,ς0 (x) = 1,

P γ,ς1 (x) =
1

2
(2 + γ + ς)x+

1

2
(γ − ς),

P γ,ςq+1(x) =
(
Aγ,ςq x−Bγ,ςq

)
P γ,ςq (x)− Cγ,ςq P γ,ςq−1(x), if 1 ≤ q ≤ N .

The recursion coefficients are given by

Aγ,ςq =
(2q + γ + ς + 1)(2q + γ + ς + 2)

2(q + 1)(q + γ + ς + 1)
,

Bγ,ςq =
(2q + γ + ς + 1)(ς2 − γ2)

2(q + 1)(q + γ + ς + 1)(2q + γ + ς)
,

Cγ,ςq =
(2q + γ + ς + 2)(q + γ)(q + ς)

(q + 1)(q + γ + ς + 1)(2q + γ + ς)
.

Let ωγ,ς(x) = (1− x)γ(1 + x)ς . Then, one has∫ 1

−1

P γ,ςq (x)P γ,ςj (x)ωγ,ς(t) dx = hγ,ςq δq,j , ∀q = 0, 1, . . . ,N ,

where δq,j is the Kronecker delta function and

hγ,ςq =
2(γ+ς+1)Γ(q + γ + 1)Γ(q + ς + 1)

(2q + γ + ς + 1)q!Γ(q + γ + ς + 1)
, ∀q = 0, 1, . . . ,N .

In particular, the Legendre polynomial is defined as Lr(t) = P 0,0
r (t). Accordingly, we define the following function

space to give an appropriate base functions such that the boundary conditions are satisfied exactly as clarified in

spectral methods for space-fractional differential equations [43, 44]:

WN0 = span {ϕn(x) : n = 0, 1, . . . ,N − 2} .

The function ϕn is defined on [a, b] by

ϕn(x) = Ln(x̂)− Ln+2(x̂) =
2n+ 3

2(n+ 1)
(1− x̂2)P 1,1

n (x̂), x̂ :=
2x− b− a
b− a

∈ [−1, 1].

Let us introduce the parameters

d =
λ

τ
+ b0, b̂`i = −bi−` +

λ

τ
δ`,i−1.

Then, the problem (1.1) can be rewritten in the following equivalent form (using (3.10)):

dui − κ
∂2ui
∂x2

=

i−1∑
`=0

b̂`iu` + f(ui−1, ui−N ) + gi, ∀i = 1, . . . ,M.
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The fully discrete Rothe-Galerkin spectral scheme consists of the set of approximations uNi ∈ W0
N satisfying the

system 

d
(
uNi , ϕ

)
+ κ

(
∂

∂x
uNi ,

∂

∂x
ϕ

)
=

i−1∑
`=0

b̂`i
(
uN` , ϕ

)
+
(
π0
N f(uNi−1, u

N
i−N ), ϕ

)
+
(
π0
N gi, ϕ

)
, ∀ϕ ∈ WN0 , ∀i = 1, . . . ,M,

uNi = π1,0
N ψ(ti, x), −N ≤ i ≤ 0,

(4.17)

where π0
N is a projection operator having orthogonality (OP) in the following manner

• π0
N : L2(Ω)→WN0 is OP such that if u ∈ L2(Ω) then π0

Nu ∈ WN0 satisfies

(π0
Nu, ϕ) = (u, ϕ), ∀ϕ ∈ WN0 .

• π1,0
N : H1

0 (Ω)→WN0 is OP such that if u ∈ H1
0 (Ω) then π1,0

N u ∈ WN0 satisfies

(∂xπ
1,0
N u, ∂xϕ) = (∂xu, ∂xϕ), ∀ϕ ∈ WN0 .

The approximate solution is expanded as

uNi =

N−2∑
`=0

ûi`ϕ`(x).

Substituting the preceding formula into (4.17) and by taking ϕ = ϕj for each 0 ≤ j ≤ N − 2, the following matrix

representation is obtained: (
d M̄ + κS

)
Ui = Ki−1 +Ri−1 +Gi.

The notations in the preceding equality are given by

sij =

∫
Ω

ϕ′i(x)ϕ′j(x) dx, S = (sij)
N−2
i,j=0 ,

mij =

∫
Ω

ϕi(x)ϕj(x) dx, M̄ = (mij)
N−2
i,j=0 ,

gji =

∫
Ω

ϕj(x)
(
π0
N gi

)
(x) dx,

Gi = (g0
i , g

1
i , . . . , g

N−2
i )>,

hji =

∫
Ω

ϕj(x)
(
π0
N f(uNi−1, u

N
i−N )

)
(x) dx,

Ri−1 = (h0
i−1, h

1
i−1, . . . , h

N−2
i−1 )>,

Ui = (û0
i , û

1
i , . . . , û

N−2
i )>,

Ki−1 =
∑i−1
j=0 b̂

j
iM̄Uj .

The exact form of the stiffness and mass matrix is specified in the next lemma, see [45].
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Lemma 4.1. The stiffness matrix S is a diagonal matrix with

sii = 4i+ 6, i = 0, 1, . . . .

The mass matrix M̄ is symmetric with the nonzero elements

mij = mji =


b−a
2j+1 + b−a

2j+5 , i = j,

− b−a
2j+5 , i = j + 2.

5. Numerical results

Finally, we investigate the order of convergence of the scheme in the following examples satisfying T0 = T . We

first define the convergence order in time in the L2-norm sense as

Order =
|log (e (N ,M1)/e (N ,M2))|

|log (M2/M1)|
,

and the spatial approximation order (AO) by:

AO =
log (e (N ,M))

log (N )
,

where M1 6= M2 and e = e(N ,M) = max
1≤i≤M

∥∥uNi − u∥∥ .
Example 1. We consider the following nonlinear delay reaction-diffusion problem

∂β(t)u

∂tβ(t)
(x, t) +

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t)− 2u(x, t) +

u(x, t− 0.1)

1 + u2(x, t− 0.1)
+ g(x, t), x ∈ (0, 1), t ∈ (0, 1],

u(0, t) = u(1, t) = 0, t ∈ (0, 1),

u(x, t) = (1 + t)σ sin(π x), x ∈ Ω, t ∈ [−0.1, 0],

(5.18)

where g(x, t) is a given function such that problem (5.18) has the exact solution u(x, t) = (1 + t)σ sin(π x).

The variable order β(t) is given by

β(t) = β(T ) + (β(0)− β(T ))

(
1− t

T
−

sin
(
2π
(
1− t

T

))
2π

)
.

We study the behavior of the numerical solution for the following two cases:

(I) β(0) = 0.4 and β(1) = 0.6.

(II) β(0) = 0.6 and β(1) = 0.8.

The variable order cases (I) and (II) satisfy the assumption (AS1). Tables 1 and 2 show theL2-errors and corresponding

convergence orders for σ = 0.8 and 1.8 with N = 50. Tables 3 and 4 show the spatial convergence orders for various

values of N and σ if τ = 1/1600.
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Table 1: Example 1: The errors and the order of convergence orders versus τ and σ with N = 50 for case (I).

τ
σ = 0.8 σ = 1.8

Error Order Error Order

1/100 1.807× 10−3 −− 7.875× 10−3 −−

1/200 1.212× 10−3 0.576 5.230× 10−3 0.590

1/400 8.104× 10−4 0.581 3.468× 10−3 0.592

1/800 5.403× 10−4 0.584 2.297× 10−3 0.594

1/1600 3.596× 10−4 0.587 1.520× 10−3 0.595

τ1−β(0) −− 0.600 −− 0.600

Table 2: Example 1: The errors and the order of convergence orders versus τ and σ with N = 50 for case (II).

τ
σ = 0.8 σ = 1.8

Error Order Error Order

1/100 5.656× 10−3 −− 2.378× 10−2 −−

1/200 4.312× 10−3 0.391 1.802× 10−2 0.400

1/400 3.281× 10−3 0.394 1.365× 10−2 0.400

1/800 2.494× 10−3 0.396 1.035× 10−2 0.400

1/1600 1.893× 10−3 0.397 7.843× 10−3 0.400

τ1−β(0) −− 0.400 −− 0.400

Table 3: Example 1: The errors and the approximation orders versus N and σ with τ = 1/1600 for Case (I).

N
σ = 0.8 σ = 1.8

Error AO Error AO

5 3.498× 10−4 N−4.944 1.497× 10−3 N−4.041

10 3.596× 10−4 N−3.444 1.520× 10−3 N−2.817

20 3.596× 10−4 N−2.647 1.520× 10−3 N−2.165

30 3.596× 10−4 N−2.331 1.520× 10−3 N−1.907

40 3.596× 10−4 N−2.149 1.520× 10−3 N−1.758

50 3.596× 10−4 N−2.027 1.520× 10−3 N−1.658
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Table 4: Example 1: The errors and the approximation orders versus N and σ with τ = 1/1600 for Case (II).

N
σ = 0.8 σ = 1.8

Error AO Error AO

5 1.882× 10−3 N−3.898 7.818× 10−3 N−3.014

10 1.893× 10−3 N−2.722 7.843× 10−3 N−2.105

20 1.893× 10−3 N−2.092 7.843× 10−3 N−1.618

30 1.893× 10−3 N−1.843 7.843× 10−3 N−1.425

40 1.893× 10−3 N−1.699 7.843× 10−3 N−1.314

50 1.893× 10−3 N−1.602 7.843× 10−3 N−1.239

Example 2. We consider the following nonlinear delay differential equation

∂β(t)u

∂tβ(t)
(x, t) +

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + u(x, t− 0.3)(1 + u(x, t− 0.3)) + g(x, t), x ∈ (0, 1), t ∈ (0, 1],

u(0, t) = u(1, t) = 0, t ∈ (0, 1),

u(x, t) = t2x2(1− x)2, x ∈ Ω, t ∈ [−0.3, 0],

(5.19)

where g(x, t) is a given function such that problem (5.19) has the exact solution u(x, t) = t2x2(1− x)2.

The variable order β(t) is given as

(I) Linear β(t):

β(t) = β(T ) + (β(0)− β(T ))(1− t),

β(0) = 0.6, β(T ) = 0.4.

(II) Quadratic β(t):

β(t) = β(T ) + (β(0)− β(T ))(1− t2),

β(0) := 0.5, β(T ) := 0.8.

(III) Osciliating β(t):

β(t) = β(T ) + (β(0)− β(T ))(1− 1
2π sin(2π (1− t))),

β(0) = 0.6, β(T ) := 0.8.

Tables 5, 6 and 7 show the errors and the convergence orders in temporal and spatial directions for various values

of N , τ and different variable-order functions satisfying (AS1). We observe a temporal convergence rate of order

(1 − β(0)) in Example 1 and 2, and that the accuracy of the spectral method is tied with the temporal order of

convergence.
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Table 5: Example 2: The errors and the order of convergence orders versus τ and N for case (I).

τ (N = 50) Error Order N (τ = 1/1600) Error AO

1/100 9.443× 10−4 −− 5 3.082× 10−4 N−5.022

1/200 7.129× 10−4 0.405 10 3.084× 10−4 N−3.510

1/400 5.388× 10−4 0.403 20 3.084× 10−4 N−2.698

1/800 4.075× 10−4 0.402 30 3.084× 10−4 N−2.376

1/1600 3.084× 10−4 0.402 40 3.084× 10−4 N−2.191

Table 6: Example 2: The errors and the order of convergence orders versus τ and N for case (II).

τ (N = 50) Error Order N (τ = 1/1600) Error AO

1/100 5.810× 10−4 −− 5 1.417× 10−4 N−5.505

1/200 4.068× 10−4 0.514 10 1.418× 10−4 N−3.848

1/400 2.857× 10−4 0.509 20 1.418× 10−4 N−2.95772

1/800 2.012× 10−4 0.506 30 1.418× 10−4 N−2.605

1/1600 1.418× 10−4 0.504 40 1.418× 10−4 N−2.401

Table 7: Example 2: The errors and the order of convergence orders versus τ and N for case (III).

τ (N = 50) Error Order N (τ = 1/1600) Error AO

1/100 9.543× 10−4 −− 5 3.104× 10−4 N−5.018

1/200 7.194× 10−4 0.407 10 3.106× 10−4 N−3.507

1/400 5.432× 10−4 0.405 20 3.106× 10−4 N−2.696

1/800 4.106× 10−4 0.403 30 3.106× 10−4 N−2.374

1/1600 3.106× 10−4 0.402 40 3.106× 10−4 N−2.189
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6. Conclusion

This paper aimed to discuss the existence and uniqueness of a weak solution for a nonlinear delay parabolic

equation with temporal variable order and a drift term. A Rothe scheme is targeted to achieve that purpose under

rather weak conditions on the data. A numerical implementation of the problem based on a combined scheme is

finally introduced. This scheme is based on the Galerkin Legendre spectral approximation in space and a positive

definite discrete convolution approximation in time. An extension of the work to different types of delay such as

variable and distributed delays are of high concern in near future works. Another direction for future research can

concern the investigation of the shifted convolution quadrature developed in [46] can also be applied in this setting.
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