Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131537
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAverboukh, Y. V.en
dc.date.accessioned2024-04-08T11:07:54Z-
dc.date.available2024-04-08T11:07:54Z-
dc.date.issued2022-
dc.identifier.citationAverboukh, YV 2022, 'A MEAN FIELD TYPE DIFFERENTIAL INCLUSION WITH UPPER SEMICONTINUOUS RIGHT-HAND SIDE', Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, Том. 32, № 4, стр. 489-501. https://doi.org/10.35634/vm220401harvard_pure
dc.identifier.citationAverboukh, Y. V. (2022). A MEAN FIELD TYPE DIFFERENTIAL INCLUSION WITH UPPER SEMICONTINUOUS RIGHT-HAND SIDE. Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 32(4), 489-501. https://doi.org/10.35634/vm220401apa_pure
dc.identifier.issn1994-9197-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Bronze Open Access3
dc.identifier.otherhttps://www.mathnet.ru/php/getFT.phtml?jrnid=vuu&paperid=822&what=fullt&option_lang=eng1
dc.identifier.otherhttps://www.mathnet.ru/php/getFT.phtml?jrnid=vuu&paperid=822&what=fullt&option_lang=engpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131537-
dc.description.abstractMean field type differential inclusions appear within the theory of mean field type control through the convexification of a right-hand side. We study the case when the right-hand side of a differential inclusion depends on the state of an agent and the distribution of agents in an upper semicontinuous way. The main result of the paper is the existence and the stability of the solution of a mean field type differential inclusion. Furthermore, we show that the value function of the mean field type optimal control problem depends on an initial state and a parameter semicontinuously. © 2022 Udmurt State University. All rights reserved.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnauka, (075-02-2022-874)en
dc.description.sponsorshipFunding. The work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2022-874).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherUdmurt State Universityen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceVestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki2
dc.sourceVestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Naukien
dc.subjectMEAN FIELD TYPE DIFFERENTIAL INCLUSIONSen
dc.subjectMEAN FIELD TYPE OPTIMAL CONTROLen
dc.subjectSTABILITY ANALYSISen
dc.titleA MEAN FIELD TYPE DIFFERENTIAL INCLUSION WITH UPPER SEMICONTINUOUS RIGHT-HAND SIDEen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi49954424-
dc.identifier.doi10.35634/vm220401-
dc.identifier.scopus85148663329-
local.contributor.employeeAverboukh Y.V., Department of Differential Equations, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russian Federation, Institute of Natural Sciences and Mathematics, Ural Federal University, ul. Turgeneva, 4, Yekaterinburg, 620000, Russian Federationen
local.description.firstpage489-
local.description.lastpage501-
local.issue4-
local.volume32-
dc.identifier.wos000904711300001-
local.contributor.departmentDepartment of Differential Equations, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russian Federationen
local.contributor.departmentInstitute of Natural Sciences and Mathematics, Ural Federal University, ul. Turgeneva, 4, Yekaterinburg, 620000, Russian Federationen
local.identifier.pure32909595-
local.identifier.pure1a5507de-9df0-4e41-9010-3dbb50e20c6duuid
local.identifier.eid2-s2.0-85148663329-
local.identifier.wosWOS:000904711300001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85148663329.pdf208,05 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.