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A MEAN FIELD TYPE DIFFERENTIAL INCLUSION WITH UPPER
SEMICONTINUOUS RIGHT-HAND SIDE

Mean field type differential inclusions appear within the theory of mean field type control through the
convexification of a right-hand side. We study the case when the right-hand side of a differential inclusion
depends on the state of an agent and the distribution of agents in an upper semicontinuous way. The
main result of the paper is the existence and the stability of the solution of a mean field type differential
inclusion. Furthermore, we show that the value function of the mean field type optimal control problem
depends on an initial state and a parameter semicontinuously.
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Introduction

The mean field type control theory tries to examine the behavior of systems consisting of
many identical agents who play cooperatively. The approach of mean field type control implies
the study of the limiting system where the number of agents tends to infinity. In this case, the
probability that describes the distribution of agents plays the role of a state variable. Note that the
space of probabilities is not a Banach space. It is barely metric and endowed with the so called
Wasserstein distance [2].

The mean field type control theory borrows a lot from the finite dimensional control theory.
In particular, in the finite dimensional case, it is productive to replace the original control system
with a differential inclusion. This tool is used within the viability theory [3] and in the analysis
of Hamilton—Jacobi equations [10]. Recall that differential inclusions are usually studied under
the assumption of semicontinuity of the right-hand sides. This corresponds to the discontinuous
dependence of the capabilities on a phase variable.

The notion of a differential inclusion in the space of probability measures was previously
introduced and studied in [4-9]. In particular, the differential inclusions in the space of probability
measures were used to study the dynamic programming and properties of the value function of
the mean field type optimal control problem. However, the existing literature deals only with the
case of the right-hand side depending continuously on the state of an agent.

The paper is concerned with the mean field type differential inclusions which are a specific
type of the differential inclusions in the space of probability measures. The mean field type
differential inclusions appear naturally within the theory of mean field type optimal control.
The paper aims to lift the assumption of continuity of the velocity field for each agent and
prove the existence of a solution for the mean field type differential inclusion with only upper
semicontinuous right-hand side. Additionally, we study the stability of solutions of mean field
type differential inclusion w.r.t. perturbations of the right-hand side and initial distribution of
agents. The main result of the paper applied to the mean field type optimal control problem allows
one to prove the existence of the value function of the mean field type optimal control problem
and its lower semicontinuos dependence on an initial distribution of agents and a parameter.

The paper is organized as follows. The general notation and the concept of mean field type
differential inclusion are introduced in Section 1. The existence theorem for the mean field
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type differential inclusion with the upper semicontinuous right-hand side is derived in Section 2.
The next section is concerned with the stability analysis of the solutions of the mean field type
differential inclusions. Finally, in Section 4, we apply the obtained result to the mean field type
optimal control and prove that its value function depends on an initial state and a parameter in a
lower semicontinuous way.

§ 1. Problem statement

A mean field type differential inclusion describes the dynamics of the distribution of agents
under assumption that each agent obeys the differential inclusion

d

ax(t) € F(t,x(t), m(t)). (1.1)
Here ¢ is time, z(t) is the state of an agent, while m(t) is a probability on the state space that
describes the distribution of all agents. Formally integrating (1.1) w.r. t. the measure variable, we
arrive at the following mean field type differential inclusion

d

—m

dt
Notice that this system appears by the convexification of the right-hand side of the mean field
type control system with the dynamics of each agent

d
dt’

To introduce the definition of the solution as well as the standing assumption we need some
notation.

First, recall that, if X is a metric space with a distance py, then the Borel o-algebra B(X) is
the minimal o algebra containing all open subsets of X. Further, a Borel probability on X is a
probability defined on B(.X). The set of Borel probabilities is denoted by P(X).

If zo € X, R > 0, then we denote by Br(z) the ball of radius R centered in xy. If,
additionally, X is a Banach space, x is its origin, we will omit the argument.

If (2, F) and (¥, F') are two measurable spaces, [P is a probability on F, while £: 2 —
is F /F'-measurable mapping, then 4P is the probability on F’ defined by the rule: for Y’ € F/,

(E4P)(T') = P(¢(T")).

The probability ££P is called a push-forward of P through &.

Now let us consider the space of probabilities on X with a finite p-th moment. Let the
set PP(X) be equal to the set of all probabilities on X such that, for some (equivalently, any
T, € X)

(t) € (F(t,-,m(t)), V)m(t). (1.2)

(t) = f(t,z(t), m(t),u(t,x(t))), u(t,z)e€ U(x,m(t)).

E(m) = /Xp’j((:c,x*)m(d:c) < 0.

The set P?(.X) is endowed by the Kantorovich-Rubinstein metric (also called in the literature the
Wasserstein metric). If my, my € PP(X), then

1/p

inf P (@1, x2)m(d(21, 2))

A
Wp(ml, mg) =
well(m1,mz2) XXX

Here I1(mq,ms) is the set of plans between my, mo, i.e., m € II(my, ms) if 7 is a probability
on X x X such that p’fir = m;. Hereinafter, p(x1, 25) £ ;.
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Further, we denote the set of curves defined on [s, r| with values in R? by Ty, i.e.,
Ly, 2 C([s,r]; Rd).

If s =0,r =T (here T is a fixed final time), then we will omit the subindices. Let ¢ € [s,r],
then e;: I'y,, — R? stand for the evaluation operator, i.¢., if v € Ty,

If C" > 0, then Lip(C") stands for the set of curves in I" which are Lipschitz continuous with the
constant C'.

Let, for each n, [0,7] 3 t — m,(t) € PP(R?) be a flow of probabilities. We say that the
sequence of flows of probabilities {m,,(-)} converges to m(-), if

sup W,(my(t), m(t)) — 0 as n — oo.
te[0,7

The main feature of the paper is the assumption on the right-hand side of (1.2). We assume
that

(Al) foreacht € [0,7T], z € R%, m € PP(R?), F(t,z,m) is compact and convex subset of R¢;
(A2) the mapping (¢,xz,m) — F(t,z,m) is upper semicontinuous;
(A3) there exists a constant Cy > 0 such that, for each t € [0,7], z € RY, m € PP(RY),
w € F(t,x,m),
[w]] < Co(L+ [lz]| + o (m)).

In the paper, we use the following definition of the solution of (1.2).

Definition 1. We say that a flow of probabilities m(-) is a solution of (1.2) if there exists a
probability y € PP(I") such that

o m(t) = edx;
e y-a.e. v € I satisfy
d
5710 € F(t,7(t), m(t)). (1.3)
In this case, we say that y determines the flow of probabilities m(-).

Recall that x(-) is a solution of the differential inclusion

d
Za(t) € G(t, (1)) (1.4)

if z(+) is absolutely continuous and satisfies (1.4) for a.e. t € [0, 7.
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§ 2. Existence of solution to the mean field type differential inclusion

In this section, we prove the existence theorem for a differential inclusion.
Theorem 1. Let my € PP(R?), then there exists at least one solution of (1.2).

To prove this theorem, we will use the famous Peano method.

Let N be a natural number, for each n € {0,..., N}, we put t) = Tn/N. If y € R,
let f(y) be a measurable selector of the set-valued mapping F(0,y, mg). Its existence follows
from [1, Theorem 18.13]. On [0, t}] we put

2N (ty) Ey+ fly)t.

Further, set m™(t) = xV(t,-)fmo. Now assume that the curves xV(¢,y) and the flow of
probabilities m” (¢) are constructed for all y € R%, ¢ € [0,#Y]. For each t € [tV V], let

IN(t,y) € F(t,zN(t,y),m™(t)). Without loss of generality, one can assume that f" is measur-
able [1, Theorem 18.13]. If ¢ € [¢2',t)Y. ], put

) 2 @)+ [P TN w0 £ 2

Let us prove the following properties of the constructed family of curves.

Lemma 1. There exist constants Cy, Cy such that, for each t € [0, T],
p(m™ (1)) < Ci(1 + 6(mq)).

1z ()| < Ca(1 + Gp(mo) + [lylD)

P r o o f. We shall use induction that on each time interval [0,¢)] the following inequalities
hold true:
(MM (1)) < 6p(mg)e® 0t + eof. (2.1)

™ (8 )l < [yl + 6y (mao)e* " + e, (2.2)
First, we have that for each y € RY, f(y) < Co(1 + ||ly|| + <p(m0)). Thus, for t € [0, )],

=™ (&, )l < [yl + Co(L + [yl + G5 (mo))t. (2.3)
Using the definition of the measure m® (¢), we have that
(M (1) < Gp(mo) + Co(1 + 26,(mao) )t

Therefore,
(M (1)) < Gp(mo)e " + Cot.

Further, this and (2.3) imply that
1z (& )l < [lylle”” + tCo(1 + 6, (m0))-
This proves (2.1) and (2.2) on [0, t}V].
Now assume that (2.1) and (2.2) are fulfilled on [0,¢Y]. We shall prove that these estimates
hold true for ¢ € [t} ) ,]. Indeed, if 7 € [t} ¢2,,],

1Y (r = T/N )|l < Co(1 + ||]2™ (7 = T/N)|| + 6 (m™ (7 — T/N))).
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Therefore, for ¢ € [t )],
t
G(m™ (1)) < 6 (m™(ty) + CO/ (1+ 26 (m™ (1 — Tn/N)))dr.

2

This implies the following inequality on [¢2, ¢} ]:
6p(m™ (1)) < 6 (mo)e® @ (14 2Cy(t — 1)) + €2 (1 + Co(t — 1))
Using estimate (2.1) on [0, ¢)], we conclude that this inequality is valid for ¢ € [t} ) ,].
Now, notice that, for t € [t} ], ],
t

Iz @)1 <l ()1 + Co/ L+ [l2™(r = T/N)| + 6(m™ (7 = T/N)))dr.

tN

n

Using the assumption that (2.1), (2.2) hold on [0, )], we have that
12N @)1 < [yl (1+Co(t — 1)) +
+ 6 (mg) 2P0t (14 2C(t — 1)) + €290t (1 4 2C,(t — tV)).

This gives (2.2) on [t} t),].
Inequalities (2.1), (2.2) imply the statement of the lemma. U
This lemma and the construction of the curves 2V imply the following.

Corollary 1. The curves x™ (-,y) are uniformly Lipchitz continuous whenever y € Bp.

Now let us introduce the probabilities x¥ on T’
YN £ XNm. (2.4)
Hereinafter, X* is an operator that assigns to y the whole trajectory 2V (-, y).

Lemma 2. Each probability x~ € PP(T'). The sequence of measures {x™ }%5_, is tight. Moreover,
measures {x¥} have a uniformly integrable p-th moment.

P r o o f. The inclusion x» € PP(T) directly follows from (2.4) and Lemma 1.
To prove the tightness of the sequence {x"}, we consider the set Kr = {XN(y): y € Bg}.
By Lemma 1, Corollary 1 and the Arzela—Ascoli theorem, the set K is compact. Further,

XV (Kg) = mo(Bg).

This gives the tightness.
Further, we have that

/ IVIPx ™ (d) = / 12 (- ) Pmo(dy).
>R {wleV (w12 R)

Now let us use Lemma 1. We have that

/ 1 (-, ) [Pmo(dy) < 27! / (1 + [lgll? + 2 (mo)ymoldy).
{y:[|l=N ()| >R}

RABR/Cy—T—cp(mg)

The right-hand side of this equality tends to zero when R — oo due to the fact that my € PP(R?).
This gives the uniform integrability of the p-th moment of x*. U
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Lemma 3. The following estimate is valid:
Wy(m™(s), m™(r)) < Cols — r|(1 + 26,(mo)).

Proof Without loss of generality we assume that r > s. Since m¥(s) = e,fx?,
m™ (r) = e,fix", we have that

W, (m (s), m (1)) < [/ /e

r

JRCT R

By the Minkowski’s integral inequality,

Wy < [ [ [ @] e

Using the definition of the measure x'¥, we conclude that

Wy () m* ) < [ [ [ et ipmotan)] " ar
This and Lemma 1 give that
W (s),m™ (1)) < Calr = )(1+ 2, mo)). =

Proof of Theorem 1. By [2, Proposition 7.1.5] and Lemma 2, we have that the
sequence {x'V} is relatively compact. This means that there exists a subsequence {x"}>°, and a
measure x € PP(T) such that W,(x™, x) — 0 as [ — co. Put

m(t) £ edix

By definition we have that m(0) = my. Let us prove that m(-) solves (1.2). To this end,
choose v € supp(). Due to [2, Proposition 5.1.8], there exists a sequence {y"'} that converges
to v such that v € supp(x™"'). Using the definition of x" (see (2.4)), one can assume that
ANt = gNi(. yN), where the sequence {y™'} converges to y = v(0).

The definition of =™ implies that, for a.e. t € [0, 7],

d
Eg;Nl (t,y™) € F(t — T/Ny, ™ (t — T/Ny, y™), m™(t — T/N)).

By [11, Theorem 1.5], we have that, for a.e. ¢ € [0, 7],

d o0 [e.e]
—x(t,y) € (@ | F(t = T/Np, 2™ (t = T/N,,y™), m™ (t = T/N)). (2.5)
dt
L=1 I=L
Now notice that the convergence of {y”~!} to y implies the boundness of this sequence.
Thus, 2™i(-,4™) are uniformly Lipschitz continuous. Moreover, recall (see Lemma 3) that
mN(t —T/N)— m(t) as N — oo. Therefore, the right-hand side in (2.5) converges to
F(t,v(t),m(t)). This gives the fact y-a.e. v € I satisfies (1.2). O
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§ 3. Stability analysis

In this section, we study the convergence of the solution of mean field type differential
inclusions. To this end, we consider a family of differential inclusions
d
Em"(t) € (Fu(t,-,my(t)), Vim,(t). (3.1)
Additionally each differential inclusion is endowed with the initial condition m,,(0) = mg,. We
assume that each multifunction F;, satisfies conditions (A1)—(A3).

Definition 2. We say that a multivalued velocity field F*: [0, 7] x R? x PP(R?) is an upper limit
of multivalued velocity fields F;, provided that

F*(t,z,m) = ﬂ co U F.(t,z',m')|.

neN,6>0 >n,||'—z||<6,Wp(m/,m)<é
In this case, the mapping F™ is denoted by

LimsupF;,.

n—oo

The inclusion
LimsupF;,, C F

n— o0

means that, for each ¢, x, m, one has

(t,x,m) C F(t,x,m).

n—oo

[LimsupFn

Theorem 2. Assume that Limsup,,_, F, C F, while W,(mg,, mo) — 0 as n — oo. Let,
for each natural n, m,(-) be a solution of (3.1) with initial condition m,(0) = my,. Then,
{mn ()}, is relatively compact. If it converges to m(-), then m(-) solves (1.2) with initial
condition m(0) = my.

Lemma 4. If m(-) is a solution of (1.2) with initial condition m(0) = my, then there exists a
constant C3 computed by T and Cy such that

sp(m(t)) < C5(1 + gp(mo)). (3.2)
Additionally, if v € T satisfies (1.3), then
V@O < Ca(1 + 5 (m0) + [[7(0)]])-

Here Cy is a constant determined only by T and C,.

Proof Lety determine the flow of probabilities m(-). Since x-a.e. 7 satisfies (1.3), one
has that

O < 3O+ Co [ (14 (]l + s m(r))ar (.3
Therefore,
o) < 5m) + ol [ ([ 1+ @I+ smirir) san]”
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Using Minkowski’s integral inequality, we have that

p(m(t)) < gp(mo) + Co /0 t(l + 26, (m(7)))dr.

This and Gronwall’s inequality imply the first statement of the lemma.
To prove the second one, let us substitute (3.2) into (3.3). We have that

@I < [l7 ) + C3(1 + gp(mo))t + Co /Ot(l +lv@)Ddr.

As above, we use Gronwall’s inequality and obtain the second statement of the lemma. O

Corollary 2. Assume that m(-) is a solution of (1.2) with initial condition m(0) = mg, while
x € P(I') determines this solution. Then, for x-a.e. v € I, one has

[7(s) = (Il < Csls = r|(1 + o (mo) + [[7(0)]])-
Here Cj is a constant determined only by T' and C.
This corollary directly follows from Lemma 4 and Assimption (A3).
Lemma 5. Assume that
o F), satisfy conditions (A1)—(A3) with the same constant Cy;
o {mg,}>2, C PP(RY) are such that s,(mg,) < C';

e for each natural n, m,(-) solves mean field type differential inclusion (3.1) with the initial
condition m,,(0) = mgp,

o x,, € P(I') determines m,(-).
Then, the probabilities {x,} are relatively compact.

P ro o f. First, we will prove that the measures {y, } are tight. To this end, consider the set

of curves
Ky 2 {y€T: |1(0)] < R, 7€ Lip(Cs(1+ '+ R))}.

Notice that K}, is compact for every R > 0. By Corollary 2, we have that
Xa(T'\ Kp) = my (T \ Bg).

By the Chebyshev inequality, we conclude that
C
m,(I'\ Bg) < %

This gives the tightness of {m,, }.
Now let us prove the fact that the probabilities x,, have uniformly integrable p-th moment.
We have that, for each n,

/ I[P xn(dy) < C? / (1+ o (mo) + 1O xn(d)
V>R [I7(0)[|>R/C4—Casp(mo)

<oic / (1+ 2 (mo) + ylI7ymo(dv).
lylI>R/Cs—Casp(mo)
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The right-hand side of this inequality tends to zero when R — oo due to the fact that
mo € PP(R?). This proves the uniform integrability of p-th moments of x,.

By [2, Proposition 7.1.5], the tightness of {x,,} together with the uniform integrability of p-th
moment is equivalent to the relative compactness of {y, }. U

Proof of Theorem 2. Let x,, € PI') determine m,,(-). By Lemma 5, the probabili-
ties x,, are relatively compact. Therefore, there exists a sequence {x, 7}, and a probability x
such that {y,n.} converges to y. Put m(t) = e,fix. Since

Wp(mnk (t)v m(t)) = Wp(etﬂXnka X) < Wp(Xnka X)'

This gives the relative compactness of flows of probabilities m,,(-).

Now let us prove the second part of the theorem. We assume that {m,,(-)}°°, converges
to m(-). As above, for each n, let x,, € PP(I") determine the flow of probabilities m,,(-). Without
loss of generality, we assume that {x,}>> ; converges to some probability x. Further,

m(t) = eifx.

It remains to prove that, y-a.e. v € I satisfies (1.2). Notice that y,-a.e. 7, satisfies (3.1).
Further, by [2, Proposition 5.1.8] for each v € supp(x,), there exists a sequence {7,}>2, C I’
that converges to « and satisfies the inclusions ,, € supp(x,) for each n. Theorem 1.5 of [11]
gives that

d (o) o [e.e]
(1) € (@ | Fult, (1), ma(t)).
L=1 =L
Using the facts that ||, (¢) — y(¢)||, W, (mn(t),m(t)) — 0 as n — oo, while F' comprises the
upper limit of { £}, }, we obtain the second statement of the theorem. U

§4. Application to the mean field type optimal control problems
Let us consider the following mean field type optimal control problem:
minimize o(m(7T)) 4.1)
subject to m(+) satisfying
d
—m
dt
Proposition 1. Assume that F satisfies conditions (A1)~(A3), while o: PP(R?) — R is lower
semicontinuous. Then, there exists a solution of (4.1), (4.2).

(t) € (F(t,-,m(t)), V)m(t), m(0)=mo. 4.2)

P ro o f. Dueto Theorems 1, 2, the set of solutions of (4.2) is nonempty compact. Using the
fact the function o is lower semicontinuous, we conclude that, if m,, () is a minimizing sequence,
then its limit is a solution of mean field optimal control problem (4.1), (4.2). 0]

One may introduce the value function
Val(mg) £ min{o(m(T)): m(-) satisfying (4.2)}.
Further, let us consider the sequence of mean field optimal control problems
minimize o,,(m(7")) 4.3)

subject to m(-) satisfying

Zem(t) € (Fu(t, - m(0)), Vym(t), m(0) = mo. (44)
We denote the value function of this problem by Val,.
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Proposition 2. Assume that
o ["and F, satisfy (A1)—(A3);
e o and o, are lower semicontinuous;
o F' comprises the upper limit of F,,;
e o is lower semicontinuous.
Then, for every {mg,}5°, converging to my, the following inequality holds:

Val(myg) < liminf Val, (mq,).

n—o0

Proof Letm,(-)bean optimal solution for (4.3), (4.4) with m(0) = my,, i. e., we assume
that

Val,,(mo ) = 0, (my,(T)).

Using Theorem 2, without loss of generality, we assume that m,,(-) conveges to m(-) that satis-
fies (4.2). Therefore, due to assumption that o is lower semicontinuous, one has

Val(mg) < o(m(T)) < liminf o,,(m, (7)) = lim inf Val,,(my ). O

n—oo n—o0
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I0. B. Asepbyx
JAunddepennuanbHbie BKIWYEHUS] THNIA CPETHEr0 MOJIs C NMOJYHeNPePbIBHOW MPABOH 4acTbhI0

Knioueswvie cnosa: muddepeHIranbHpie BKIOUCHUS THIIA CPSIHETO I10JIs, ONTUMAIBHOE YIIPABICHUE CPe/i-
HUM T10JIEM, CTAOMIIBHOCTb.

YIK 517.977.57
DOI: 10.35634/vm220401

HduddepenunansHple BKIIOYEHUS TUIIA CPEAHETO MOJIS BOZHUKAIOT B PAMKax TCOPUH YIPaBICHUS CPEIHUM
MOJIeM TIPM OBBITYKJIEHWW TIPaBOW dacTH. MBI mccienyeM ciydaid, Koraa mpaBas 4acTh auddepeHans-
HOTO BKJIIOUCHMS 3aBHCUT OT IOJIOKEHUS areHTa W OT paclpesieleHUs] BCEX areHTOB MOJyHENPEPBIBHO.
OCHOBHOIi pe3yabTaT CTaThbH COCTOWT B JI0Ka3aTebCTBE CYIIECTBOBAHMSA M CTAOMILHOCTH pEHIeHui nud-
(epeHInaNBHBIX BKIIOYEHUH THIIA CPEAHEro Mousl. Takke MBI MOKa3bIBaeM IMONYHENPEPHIBHYIO CHU3Y 3a-
BHUCUMOCTH (DYHKIIMHU TIEHBI 33]]a9¥ ONTHMAJIBHOTO YIIPABICHHUS CPETHUM TI0JIEM OT Ha4aJbHOTO COCTOSHUS
U mapamerpa.

®dunancupoBanue. Pabora BhINONIHEHA B paMKaxX HCCIIEIOBAHHUN, MPOBOAUMBIX B YPalIbCKOM MaTeMaTH-
YecKOM LeHTpe Npu (ruHaHCOBOH moanepkke MuHHCTEpCTBA HAyKH M BhICLIEro oOpa3oBanus Poccuiickoit
Oeneparyn (Homep cortamenns 075-02-2022-874).
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