Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/131521
Title: | Order estimates for Lebesgue constants of Fourier sums in Orlicz spaces |
Authors: | Yur’evich, Antonov, N. Lukoyanov, A. N. |
Issue Date: | 2022 |
Publisher: | Krasovskii Institute of Mathematics and Mechanics |
Citation: | Антонов, НЮ & Лукоянов, АН 2021, 'Порядковые оценки констант Лебега сумм Фурье в пространствах Орлича', Труды института математики и механики УрО РАН, Том. 27, № 4, стр. 35-47. https://doi.org/10.21538/0134-4889-2021-27-4-35-47 Антонов, Н. Ю., & Лукоянов, А. Н. (2021). Порядковые оценки констант Лебега сумм Фурье в пространствах Орлича. Труды института математики и механики УрО РАН, 27(4), 35-47. https://doi.org/10.21538/0134-4889-2021-27-4-35-47 |
Abstract: | We consider the problem of order estimates for partial sums of trigonometric Fourier series as operators from Orlicz spaces Lϕ2π to the space of 2π-periodic continuous functions C2π. It is established that an arbitrary function ϕ generating an Orlicz class satisfies the estimate Sn(f) C2π ≤ Cϕ−1(n) ln(n + 1) f Lϕ 2π, (∗) where f ∈ Lϕ2π, n ∈ N, Sn(f) is the nth partial sum of the trigonometric Fourier series of f, and the constant C > 0 is independent of f and n. In addition, it is shown that if the function ϕ satisfies the ∆2-condition, then the estimate can be improved. More exactly, Sn(f) C2π ≤ Cϕ−1(n) f Lϕ 2π, f ∈ Lϕ2π, n ∈ N, C = C(ϕ). (∗∗) Counterexamples are constructed, which show that if ϕ satisfies the ∆2-condition, then estimate (∗∗) is unimprovable in order on the space Lϕ2π and, if ϕ satisfies the ∆2-condition, then estimate (∗) is unimprovable in order on the space Lϕ2π © 2021 The authors. |
Keywords: | FOURIER SERIES LEBESGUE CONSTANTS ORLICZ SPACE |
URI: | http://elar.urfu.ru/handle/10995/131521 |
Access: | info:eu-repo/semantics/openAccess |
RSCI ID: | 47228414 |
SCOPUS ID: | 85142193835 |
WOS ID: | 000756004700003 |
PURE ID: | 29083042 8b605484-25da-4436-b019-70dc67f18307 |
ISSN: | 0134-4889 |
DOI: | 10.21538/0134-4889-2021-27-4-35-47 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85142193835.pdf | 216,92 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.