Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/131481
Title: Distributive and Lower-Modular Elements of the Lattice of Monoid Varieties
Authors: Gusev, S. V.
Issue Date: 2022
Publisher: Pleiades Publishing
Citation: Gusev, SV 2022, 'Distributive and Lower-Modular Elements of the Lattice of Monoid Varieties', Siberian Mathematical Journal, Том. 63, № 6, стр. 1069-1074. https://doi.org/10.1134/S0037446622060064
Gusev, S. V. (2022). Distributive and Lower-Modular Elements of the Lattice of Monoid Varieties. Siberian Mathematical Journal, 63(6), 1069-1074. https://doi.org/10.1134/S0037446622060064
Abstract: In the lattice of semigroup varieties,the set of all neutral elements is finite,the set of all distributive elements is countably infinite,and the set of all lower-modular elements is uncountably infinite.It was established in 2018 thatthe lattice of monoid varietiescontains exactly three neutral elements.This article shows thatneutrality,distributivity,and lower-modularitycoincide in the lattice of monoid varieties.Thus,there exists only three varietiesthat are distributive and lower-modular elements of this lattice. © 2022, Pleiades Publishing, Ltd.
Keywords: 512.532.2
DISTRIBUTIVE ELEMENT
LATTICE OF VARIETIES
LOWER-MODULAR ELEMENT
MONOID
VARIETY
URI: http://elar.urfu.ru/handle/10995/131481
Access: info:eu-repo/semantics/openAccess
RSCI ID: 59493600
SCOPUS ID: 85143632411
WOS ID: 000896024900006
PURE ID: 1e69c084-f53b-4b45-9120-2fb3078f1899
32887429
ISSN: 0037-4466
DOI: 10.1134/S0037446622060064
metadata.dc.description.sponsorship: Ministry of Education and Science of the Russian Federation, Minobrnauka, (FEUZ–2020–0016)
The author was supported by the Ministry of Science and Higher Education of the Russian Federation (Project FEUZ–2020–0016).
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85143632411.pdf128,5 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.