Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/131469
Title: The thresholding problem and variability in the EEG graph network parameters
Authors: Adamovich, T.
Zakharov, I.
Tabueva, A.
Malykh, S.
Issue Date: 2022
Publisher: Nature Research
Citation: Adamovich, T, Zakharov, I, Tabueva, A & Malykh, S 2022, 'The thresholding problem and variability in the EEG graph network parameters', Scientific Reports, Том. 12, № 1, 18659. https://doi.org/10.1038/s41598-022-22079-2
Adamovich, T., Zakharov, I., Tabueva, A., & Malykh, S. (2022). The thresholding problem and variability in the EEG graph network parameters. Scientific Reports, 12(1), [18659]. https://doi.org/10.1038/s41598-022-22079-2
Abstract: Graph thresholding is a frequently used practice of eliminating the weak connections in brain functional connectivity graphs. The main aim of the procedure is to delete the spurious connections in the data. However, the choice of the threshold is arbitrary, and the effect of the threshold choice is not fully understood. Here we present the description of the changes in the global measures of a functional connectivity graph depending on the different proportional thresholds based on the 146 resting-state EEG recordings. The dynamics is presented in five different synchronization measures (wPLI, ImCoh, Coherence, ciPLV, PPC) in sensors and source spaces. The analysis shows significant changes in the graph’s global connectivity measures as a function of the chosen threshold which may influence the outcome of the study. The choice of the threshold could lead to different study conclusions; thus it is necessary to improve the reasoning behind the choice of the different analytic options and consider the adoption of different analytic approaches. We also proposed some ways of improving the procedure of thresholding in functional connectivity research. © 2022, The Author(s).
Keywords: BRAIN
BRAIN MAPPING
ELECTROENCEPHALOGRAPHY
BRAIN
BRAIN MAPPING
ELECTROENCEPHALOGRAPHY
PROCEDURES
URI: http://elar.urfu.ru/handle/10995/131469
Access: info:eu-repo/semantics/openAccess
cc-by
License text: https://creativecommons.org/licenses/by/4.0/
SCOPUS ID: 85141185181
WOS ID: 000879109400060
PURE ID: 31782352
bc8f1daa-7cc5-4fa0-9633-183378fc5900
ISSN: 2045-2322
DOI: 10.1038/s41598-022-22079-2
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85141185181.pdf8,55 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons