Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131468
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBhardwaj, M.en
dc.contributor.authorOsipov, A. V.en
dc.date.accessioned2024-04-08T11:07:29Z-
dc.date.available2024-04-08T11:07:29Z-
dc.date.issued2022-
dc.identifier.citationBhardwaj, M & Osipov, AV 2022, 'Mildly version of Hurewicz basis covering property and Hurewicz measure zero spaces', Bulletin of the Belgian Mathematical Society - Simon Stevin, Том. 29, № 1, стр. 121-131. https://doi.org/10.36045/j.bbms.210114aharvard_pure
dc.identifier.citationBhardwaj, M., & Osipov, A. V. (2022). Mildly version of Hurewicz basis covering property and Hurewicz measure zero spaces. Bulletin of the Belgian Mathematical Society - Simon Stevin, 29(1), 121-131. https://doi.org/10.36045/j.bbms.210114aapa_pure
dc.identifier.issn1370-1444-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Green Open Access3
dc.identifier.otherhttps://arxiv.org/pdf/2202.126521
dc.identifier.otherhttps://arxiv.org/pdf/2202.12652pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131468-
dc.description.abstractIn this paper, we introduced the mildly version of the Hurewicz basis covering property, studied by Babinkostova, Kočinac, and Scheepers. A space X is said to have mildly-Hurewicz property if for each sequence hUn : n ∈ ωi of clopen covers of X there is a sequence hVn : n ∈ ωi such that for each n, Vn is a finite subset of Un and for each x ∈ X, x belongs to S Vn for all but finitely many n. Then we characterized mildly-Hurewicz property by mildly-Hurewicz Basis property and mildly-Hurewicz measure zero property for metrizable spaces. © 2022 Belgian Mathematical Society. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherBelgian Mathematical Societyen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceBulletin of the Belgian Mathematical Society - Simon Stevin2
dc.sourceBulletin of the Belgian Mathematical Society - Simon Stevinen
dc.subjectHUREWICZ BASIS PROPERTYen
dc.subjectHUREWICZ MEASURE ZERO PROPERTYen
dc.subjectMILDLY HUREWICZ SPACEen
dc.subjectSELECTION PRINCIPLESen
dc.titleMildly version of Hurewicz basis covering property and Hurewicz measure zero spacesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.doi10.36045/j.bbms.210114a-
dc.identifier.scopus85148302945-
local.contributor.employeeBhardwaj M., Department of Mathematics, University of Delhi, New Delhi, 110007, Indiaen
local.contributor.employeeOsipov A.V., Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, Yekaterinburg, Russian Federationen
local.description.firstpage121-
local.description.lastpage131-
local.issue1-
local.volume29-
dc.identifier.wos000988441800007-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, Yekaterinburg, Russian Federationen
local.contributor.departmentDepartment of Mathematics, University of Delhi, New Delhi, 110007, Indiaen
local.identifier.pure34710963-
local.identifier.purec916d327-5d4d-494a-8a66-880b452fc42euuid
local.identifier.eid2-s2.0-85148302945-
local.identifier.wosWOS:000988441800007-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85148302945.pdf168,95 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.