Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/131387
Название: | Lattice dynamics and topological surface phonon states in cuprous oxide Cu2 O |
Авторы: | Wang, Z. Zhou, W. Rudenko, A. N. Yuan, S. |
Дата публикации: | 2022 |
Издатель: | American Physical Society |
Библиографическое описание: | Wang, Z, Zhou, W, Rudenko, AN & Yuan, S 2021, 'Lattice dynamics and topological surface phonon states in cuprous oxide Cu2 O', Physical Review B, Том. 103, № 19, 195137. https://doi.org/10.1103/PhysRevB.103.195137 Wang, Z., Zhou, W., Rudenko, A. N., & Yuan, S. (2021). Lattice dynamics and topological surface phonon states in cuprous oxide Cu2 O. Physical Review B, 103(19), [195137]. https://doi.org/10.1103/PhysRevB.103.195137 |
Аннотация: | The topological phonon state of quantum matter is an emerging field that has been attracting considerable interest. For instance, Weyl phonons in transition-metal monosilicides have been proposed theoretically and identified experimentally. However, topological phonon nodal net states are not well studied due to the lack of realistic materials. Here, based on first-principles calculations and effective model analysis, we propose an existing material - cuprous oxide - to host the nodal net phonons. The nontrivial phonon surface states and uncovered phononic arcs are clearly visible on k-resolved phonon spectra, which are amenable to experimental detection. Our findings offer a possible platform for realizing topologically nontrivial phonon states and their applications. © 2021 American Physical Society. |
Ключевые слова: | CALCULATIONS COPPER OXIDES CRYSTAL LATTICES QUANTUM THEORY TOPOLOGY TRANSITION METALS CUPROUS OXIDE FIRST-PRINCIPLES CALCULATION MODEL ANALYSIS PHONON SPECTRUM QUANTUM MATTER REALISTIC MATERIALS SURFACE PHONON PHONONS |
URI: | http://elar.urfu.ru/handle/10995/131387 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор РИНЦ: | 46788504 |
Идентификатор SCOPUS: | 85107112346 |
Идентификатор WOS: | 000655878000005 |
Идентификатор PURE: | 22121261 2c878729-cb82-4da2-aef6-aed8b92e87a8 |
ISSN: | 2469-9950 |
DOI: | 10.1103/PhysRevB.103.195137 |
Сведения о поддержке: | Natural Science Foundation of Hubei Province, (2020CFA041) National Key Research and Development Program of China, NKRDPC, (2018YFA0305800) This work is supported by the National Key R&D Program of China (Grant No. 2018YFA0305800) and Natural Science Foundation of Hubei Province, China (2020CFA041). Numerical calculations presented in this paper have been performed on the supercomputing system in the Supercomputing Center of Wuhan University. |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85107112346.pdf | 1,87 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.