Please use this identifier to cite or link to this item: https://elar.urfu.ru/handle/10995/131215
Title: The Electrophoretic Deposition of Nanopowders Based on Yttrium Oxide for Bulk Ceramics Fabrication
Authors: Kalinina, E.
Ivanov, M.
Issue Date: 2022
Publisher: MDPI
Citation: Kalinina, E & Ivanov, M 2022, 'The Electrophoretic Deposition of Nanopowders Based on Yttrium Oxide for Bulk Ceramics Fabrication', Inorganics, Том. 10, № 12, 243. https://doi.org/10.3390/inorganics10120243
Kalinina, E., & Ivanov, M. (2022). The Electrophoretic Deposition of Nanopowders Based on Yttrium Oxide for Bulk Ceramics Fabrication. Inorganics, 10(12), [243]. https://doi.org/10.3390/inorganics10120243
Abstract: In the present work, a study was carried out to investigate the key factors that determine the uniformity, mass, thickness, and density of compacts obtained from nanopowders of solid solutions of yttrium and lanthanum oxides ((LaxY1−x)2O3) with the help of the electrophoretic deposition (EPD). Nanopowders were obtained by laser ablation of a mixture of powders of yttrium oxide and lanthanum oxide in air. The implemented mechanisms of the EPD and factors of stability of alcohol suspensions are analyzed. It has been shown that acetylacetone with a concentration of 1 mg/m2 can be used as a dispersant for stabilization of isopropanol suspensions of the nanoparticles during the EPD. It was shown that the maximum density of dry compacts with a thickness of 2.4 mm reaches 37% of theoretical when EPD is performed in vertical direction from a suspension of nanopowders with addition of acetylacetone. © 2022 by the authors.
Keywords: ELECTROPHORETIC DEPOSITION (EPD)
NANOPARTICLES
SUSPENSION
YTTRIUM OXIDE
ZETA POTENTIAL
URI: http://elar.urfu.ru/handle/10995/131215
Access: info:eu-repo/semantics/openAccess
cc-by
License text: https://creativecommons.org/licenses/by/4.0/
SCOPUS ID: 85144665239
WOS ID: 000901000500001
PURE ID: 33223105
78086ad7-54a5-43de-b41c-d0c5199eb0d8
ISSN: 2304-6740
DOI: 10.3390/inorganics10120243
Sponsorship: Russian Science Foundation, RSF, (18-13-00355)
Ural Federal University, UrFU
Ministry of Science and Higher Education of the Russian Federation, (075-15-2021-677, 122011200363-9)
This research was funded by the Russian Science Foundation, grant number 18-13-00355. The electron microscope of the Ural Center for Shared Use “Modern nanotechnology” Ural Federal University (Reg. No. 2968) was used with financial support of Ministry of Science and Higher Education of the RF (Project No. 075-15-2021-677). The laser ablation equipment of the Center for Shared Use “Electrophysics” in the Institute of Electrophysics, Ural Branch of Russian Academy of Sciences was used with financial support of Ministry of Science and Higher Education of the RF (No. 122011200363-9).
RSCF project card: 18-13-00355
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85144665239.pdf2,82 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons