Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131213
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorZhdanov, A.en
dc.contributor.authorDolganov, A.en
dc.contributor.authorZanca, D.en
dc.contributor.authorBorisov, V.en
dc.contributor.authorRonkin, M.en
dc.date.accessioned2024-04-08T11:05:48Z-
dc.date.available2024-04-08T11:05:48Z-
dc.date.issued2022-
dc.identifier.citationZhdanov, A, Dolganov, A, Zanca, D, Borisov, V & Ronkin, M 2022, 'Advanced Analysis of Electroretinograms Based on Wavelet Scalogram Processing', Applied Sciences (Switzerland), Том. 12, № 23, 12365. https://doi.org/10.3390/app122312365harvard_pure
dc.identifier.citationZhdanov, A., Dolganov, A., Zanca, D., Borisov, V., & Ronkin, M. (2022). Advanced Analysis of Electroretinograms Based on Wavelet Scalogram Processing. Applied Sciences (Switzerland), 12(23), [12365]. https://doi.org/10.3390/app122312365apa_pure
dc.identifier.issn2076-3417-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.mdpi.com/2076-3417/12/23/12365/pdf?version=16703205431
dc.identifier.otherhttps://www.mdpi.com/2076-3417/12/23/12365/pdf?version=1670320543pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131213-
dc.description.abstractFeatured Application: The results of this work will be used to develop a system to assist ophthalmologist doctor decisions. The electroretinography (ERG) is a diagnostic test that measures the electrical activity of the retina in response to a light stimulus. The current ERG signal analysis uses four components, namely amplitude, and the latency of a-wave and b-wave. Nowadays, the international electrophysiology community established the standard for electroretinography in 2008. However, in terms of signal analysis, there were no major changes. ERG analysis is still based on a four-component evaluation. The article describes the ERG database, including the classification of signals via the advanced analysis of electroretinograms based on wavelet scalogram processing. To implement an extended analysis of the ERG, the parameters extracted from the wavelet scalogram of the signal were obtained using digital image processing and machine learning methods. Specifically, the study focused on the preprocessing of wavelet scalogram as images, and the extraction of connected components and thier evaluation. As a machine learning method, a decision tree was selected as one that incorporated feature selection. The study results show that the proposed algorithm more accurately implements the classification of adult electroretinogram signals by 19%, and pediatric signals by 20%, in comparison with the classical features of ERG. The promising use of ERG is presented using differential diagnostics, which may also be used in preclinical toxicology and experimental modeling. The problem of developing methods for electrophysiological signals analysis in ophthalmology is associated with the complex morphological structures of electrophysiological signal components. © 2022 by the authors.en
dc.description.sponsorshipUral Federal University Program of Developmenten
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipThe research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority—2030 Program) is gratefully acknowledged.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceApplied Sciences2
dc.sourceApplied Sciences (Switzerland)en
dc.subjectBIOMEDICAL RESEARCHen
dc.subjectCLASSIFICATIONen
dc.subjectELECTRORETINOGRAMen
dc.subjectELECTRORETINOGRAPHYen
dc.subjectERGen
dc.subjectMACHINE LEARNINGen
dc.titleAdvanced Analysis of Electroretinograms Based on Wavelet Scalogram Processingen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/app122312365-
dc.identifier.scopus85143686648-
local.contributor.employeeZhdanov A., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekatrinburg, 620002, Russian Federation, Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91052, Germanyen
local.contributor.employeeDolganov A., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekatrinburg, 620002, Russian Federationen
local.contributor.employeeZanca D., Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91052, Germanyen
local.contributor.employeeBorisov V., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekatrinburg, 620002, Russian Federationen
local.contributor.employeeRonkin M., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekatrinburg, 620002, Russian Federationen
local.issue23-
local.volume12-
dc.identifier.wos000895078900001-
local.contributor.departmentEngineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekatrinburg, 620002, Russian Federationen
local.contributor.departmentMachine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91052, Germanyen
local.identifier.pure32859469-
local.identifier.pure3cd296ad-b7eb-4a17-8051-a7ed3b66d44cuuid
local.description.order12365-
local.identifier.eid2-s2.0-85143686648-
local.identifier.wosWOS:000895078900001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85143686648.pdf2,45 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons