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mologist doctor decisions.

Abstract: The electroretinography (ERG) is a diagnostic test that measures the electrical activity of the
retina in response to a light stimulus. The current ERG signal analysis uses four components, namely
amplitude, and the latency of a-wave and b-wave. Nowadays, the international electrophysiology
community established the standard for electroretinography in 2008. However, in terms of signal
analysis, there were no major changes. ERG analysis is still based on a four-component evaluation.
The article describes the ERG database, including the classification of signals via the advanced
analysis of electroretinograms based on wavelet scalogram processing. To implement an extended
analysis of the ERG, the parameters extracted from the wavelet scalogram of the signal were obtained
using digital image processing and machine learning methods. Specifically, the study focused on
the preprocessing of wavelet scalogram as images, and the extraction of connected components
and thier evaluation. As a machine learning method, a decision tree was selected as one that
incorporated feature selection. The study results show that the proposed algorithm more accurately
implements the classification of adult electroretinogram signals by 19%, and pediatric signals by
20%, in comparison with the classical features of ERG. The promising use of ERG is presented using
differential diagnostics, which may also be used in preclinical toxicology and experimental modeling.
The problem of developing methods for electrophysiological signals analysis in ophthalmology is
associated with the complex morphological structures of electrophysiological signal components.

Keywords: biomedical research; classification; machine learning; electroretinography; electroretinogram;
ERG

1. Introduction

Biomedical research is a multidisciplinary area of medicine, biology, informatics, and
engineering. The results of the research in this area may provide for the development of
new methods in the diagnostics and treatments of various diseases [1]. The present study
describes the use of biomedical ophthalmic signals for the diagnosis of retinal diseases.

The non-invasive ocular test called electroretinogram (ERG) evaluates the retinal
function by measuring the electrical responses of the retina cells that are generated by a
light stimulus. ERG consists of several responses, namely, the photoreceptors in the outer
retina, inner retinal layers, and the final output neurons [2]. ERG is mostly used for the
diagnostic assessment of toxic retinopathies, diabetic retinopathies, hereditary diseases, etc.

The phenomenon of an electrical potential of a living entity’s eye under a light stimulus
action was found by a Swedish physician Holmgren in 1865. This was the background for
the scientific discovery of ERG. Further studies of Dewar, Einthroven, Waller, and Granit
identified ERG signals components that were conditioned by physiological responses [3–6].
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The modern concept of ERG analysis involves the measurements of a- and b-waves. An
a-wave is characterized as being the first large negative component associated with the
photoreceptor response in the outer retina. A b-wave describes a positive component that
is associated with the inner layers response of the retina [7–11].

The ERG technique has a great potential for early disease detection, diagnosis, and
interventions in the field of ophthalmology. Another popular technique is the optical coher-
ence tomography (OCT) test. The ERG can be a useful addition for child patients and those
who are cognitively or physically disabled, or who in some other way cannot participate.
In addition, it can reflect the retinal lesion several years before visual symptomatology or
structural damage are detected by OCT. In recent years, the ocular toxicity method has
obtained an increased popularity in the drug therapy assessment of visual impairment,
where the ERG technique has shown good prospects in the retinal toxicity test [12,13].
Manual ERG analysis is, however, highly dependent on the experience of the clinician,
as a misdiagnosis might mean that the patient misses the optimal time for treatment. An
automated algorithm will be a powerful tool in ERG signal analysis, but it requires large
databases for verification and validation. The strong motivation to understand in more
detail the ERG signals start at first glance with building a signal’s database, which includes
adults and children. In this way, waveforms can be analyzed in terms of a physiological
process and compared according to waveform morphology.

The novelty of the current study relates to the processing of pediatric signals, which, to
the best of our knowledge, has a limited description in the scientific literature. Additionally,
we propose an approach to wavelet feature extraction that improves upon the accuracy of
both adult and pediatric diagnosis classification. The limitations of the work: The work
provides initial study results on a rather limited database. In the next step, the database will
be assumed to be exceeding. The paper includes the comparison of the classical existent
approach using four features and our one, which extends the results leading to classification
accuracy improvement. To extract the parameters, the cwt function of the PyWT library is
used, where the Gaussian wavelet of the eighth order was chosen as the basic function.

The rest of the paper is organized as follows: Section 2 discusses the advantages and
disadvantages of a variety of signal processing methods. Section 3 presents our ERG signals
database, as well as a pipeline for signals processing and feature extraction using classical
approach and wavelet transform. In Section 4, we present the statistical summary for the
classical ERG features in accordance with the ISCEV standard [14]. Section 5 presents the
results of feature processing using the decision tree machine learning method. Section 6
presents a discussion of the obtained results. Section 7 draws the conclusions and drafts
future works.

2. Related Work

The ERG signal is a complex signal that shows the electrical activity of retinal cells
after stimulation. It should be noted that the ERG is a short signal containing many
spectral components. ERG is high frequency (2 kHz) and short (200 ms); therefore, the
signal spectrum is in the range of 0 to 1 kHz, the spectrum sampling is 7.5 Hz, and useful
information is distributed non-linearly and may appear in a narrower range. Currently, the
ERG is evaluated using the amplitude and latency of the known waves in this signal.

The authors of article [15] described all the possible methods for investigating ERG
signals that are found in the scientific literature, including a comparative analysis of
the methods, their advantages, and disadvantages. In this paper, we focus on the time–
frequency-specific methods for ERG data processing.

The current scientific literature presents studies of ERG analysis in the frequency
domain, mainly based on the Fast Fourier transform (FFT), power spectral density (PSD),
and linear prediction (LP) [16]. Scientific articles show a variety of research methods in
the field of diagnosing diseases of the retina, but the results are difficult to generalize due
to differences in ERG protocols. The methods presented in the articles demonstrate the
accuracy of the analysis in the time domain. Some studies are focused on the frequency in
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domain analysis of the oscillatory potential, since this signal has a shorter amplitude than
other ERG components.

Obviously, the disadvantage of the FFT method is the lack of temporal localization,
which means that the power spectrum density cannot provide information about the
specific frequencies of the signal. To solve this problem, Short-Time Fourier Transform
(STFT) was proposed to analyze small sections of the signal using a window [17]. Thus,
STFT served as the basis for time–frequency analysis.

It is known from studies that a smaller window size leads to an improved temporal
resolution and reduces the number of discrete frequency components. Thus, the wavelet
analysis (WA) provides full analysis potential for the discrimination of the ERG components.

The use of WA demonstrates some advantages over other frequency-domain methods
because it has a different window size that is more appropriate for analyzing sudden
and short-term signal changes. Most articles about ERG analysis in the time–frequency
domain describe the use of continuous wavelet transform (CWT) and discrete wavelet
transform (DWT) [18]. The first wavelet type requires more computation, resulting in a
slower processing time compared to a discrete one. It is possible to lose any information if
the correct level of decomposition is not chosen while using DWT. When analyzing WA, two
important factors should be considered, namely the wavelet type and decomposition. Other
papers that describe time–frequency domain analysis are also based on the DWT technique.
Both the CWT and DWT methods have their specific advantages and disadvantages. CWT
is more reliable than DWT because it can extract all of the available information without
down sampling. However, CWT requires more computation, resulting in a slower process
compared to DWT [19].

Moreover, CWT has the property of being highly redundant, which is beneficial from
one point of view and a curse from another. Because of it, no information is lost, unlike DWT.
In DWT, it is possible to lose some useful information if the correct level of decomposition
is not chosen. When analyzing WA, two important factors should be considered; they are
the wavelet type and decomposition. A careful evaluation of the feature extraction method
and reference database is required in order to extract the information needed from the ERG
signals using the above-mentioned methods.

3. Materials and Methods
3.1. Database

The research has used a database of electroretinogram signals, which includes five pro-
tocols of adult and pediatric electroretinogram signals [20,21]: Scotopic 2.0 ERG Response
(53 pediatric signals and 23 adult signals), Maximum 2.0 ERG Response (80 pediatric signals
and 42 adult signals), Photopic 2.0 ERG Response (74 pediatric signals and 32 adult signals),
Photopic 2.0 EGR Flicker Response (63 pediatric signals and 38 adult signals), and Scotopic
2.0 ERG Oscillatory Potentials (20 signals). Electrophysiological studies were conducted
in the IRTC Eye Microsurgery Ekaterinburg Center. The registration of electroretinogram
signals was performed with a computerized electrophysiological workstation EP-1000,
manufactured by Tomey GmbH (Nuremberg, Germany). All signals were recorded at the
same place and using the very same data acquisition protocols.

3.2. Features of Electroretinogram Signals

The classical analysis of the ERG signal is based on the assessment of amplitudes a
and b, and latency la and lb in the a- and b-waves (Figure 1a). In addition to the analysis of
classical parameters of the ERG signal, it is proposed to extract the parameters from the
wavelet scalogram (Figure 1b). To obtain the coupled components of the ERG signal, it is
necessary to perform the following processing of the wavelet scalogram (the corresponding
illustrations are shown in in Figure 2):

• Convert the wavelet scalogram values (Figure 2a) into 8-bit encoding format (a value
range from 0 to 255).

• Image binarization using the Otsu method (Figure 2b).
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• Image erosion with a 3 by 3 pixel kernel removes the local artifacts associated with dig-
ital signal processing. The erosion of the image allows enables pixels at the boundaries
of the segments to be removed. (Figure 2c).

• Determine the connected components of the wavelet scale using the connected com-
ponents function from the OpenCV library (Figure 2d).

Mathematically, the connected components represent a set of numbers called Markers.
These Markers are arrays of numbers that have the same size as the original image. The
Markers carry the affiliation of each point of the wavelet scale chart with a particular
segment. The wavelet scalogram was evaluated using the CWT (continuous wavelet
transform) function of the PyWT libriary [22]. The image reprocessing, binarization, and
separation in connected components were performed using the respective functions of the
OpenCV library [23].

Figure 1. Amplitude–time (a) and frequency–time (b) representations of the electroretinogram signal.

(a) (b)

Figure 2. Cont.
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(c) (d)

Figure 2. Illustration of the steps for wavelet scalogram connected components’ determination:
(a) Wavelet scalogram; (b) Binarized scalogram; (c) Filtered binarized scalogram; (d) Compo-
nents extraction.

Table 1 describes the parameters extracted from the wavelet scalogram of ERG, divided
into segments from 1 to 6 (Figure 1b).

Table 1. Parameters of electroretinogram signal.

Designation Name Description

Bmax
maximum brightness of the wavelet

scalogram segment

estimation of the segment amplitude
in the selected frequency and time

domains over the entire area
(Figure 3a)

f , t
frequency and time of the maximum

region of the wavelet scalogram
segment

estimation of the frequency–time
coordinates of the maximum area of

the analyzed segment associated with
the prevalence of the specific cells or

cellular structures contribution
(Figure 3b)

Amedian
median brightness values of wavelet

scalogram segment

evaluation of brightness distribution
over the entire area of the analyzed

segment (Figure 3c)

Amean
mean brightness values of wavelet

scalogram segment

assessment of segment displacement
and uniformity of brightness

distribution over the entire area of the
analyzed segment (Figure 3c)

t1, t2, f1, f2
frequency and time extremes of the

wavelet scalogram segment

evaluation of the spatial location in
the analyzed segment on the wavelet

scalogram (Figure 3d)

t190 , t290 , f190 , f290

frequency and time extremes of the
wavelet scalogram 90% segment

evaluation of the spatial location of the
analyzed segment, where amplitude is
higher than 90% of maximum value
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Figure 3. Parameters extracted from the wavelet scalogram of electroretinogram signal: (a) maximum
brightness of the wavelet scalogram segment; (b) frequency and time of the maximum region of the
wavelet scalogram segment; (c) median and mean brightness values of wavelet scalogram segment;
(d) frequency and time extremes of the wavelet scalogram segment.

3.3. Machine Learning Pipeline

The generalized pipeline of data processing is presented at Figure 4. A machine
learning approach was used to predict the diagnosis of the subjects (healthy person or a
person with pathology), using the features of the biomedical signals. It was relevant for
us to identify the usefulness of the new wavelet scalogram features. Different groups of
signals were considered separately due to it:

• Classical features (amplitudes a and b, and the latencies la and lb of the a- and b-waves)
(CF);

• Wavelet analysis features for the 1 and 2 segments (WA1–2);
• Wavelet analysis features for the 1, 2, 3, and 4 segments (WA1–4);
• Joined list of current features and wavelet analysis features for the 1–4 segments

(CF+WA1–4).

The decision trees (DTs) were selected as a machine learning method to solve the
classification task—predicting the target values (diagnosis) using the different features. The
main reason for choosing DTs is their ability to select the most significant features for the
task. In this paper, for the implementation of the decision trees, the training and validation
of the respective functions of the scikit-leran library were used [24].

As DT tends to easily overfit the data, it is important to carefully tune the hyperpa-
rameters. In this research, the tuning of the following hyperparameters was considered,
with max_depth (in the range of 1, 2, . . . , 14, 15) and min_samples_split (in the range of
3, 6, . . . , 12, 15).

For each of four different groups of signals, the most optimal hyperparameters were
found with the grid search (GridSearch) using a 5-fold stratified K-fold cross-validation
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(StratifiedKFold). After the optimal hyperparameters were found, training and evaluating
of the model were conducted as follows. First, we fit DT with the whole data. Then, we
selected significant features using the feature_importances attribute, and only features
with non-zero values of feature_importances were selected for subsequent analysis. Here,
we considered feature_importances based on the reduction in Gini impurity. Afterwards,
we performed cross-validation of the DT model using only the important features. The
cross-validation was performed using StratifiedKFold implementation to ensure that each
fold preserves the percentage of samples for each class. The number of splits was set
to 5. The standard classification metrics were used—Accuracy, Precision, Recall, and F1-
score. To obtain the final evaluation of the DT model, we averaged the metrics over all
five validation folds. The standard deviation of the metrics over five validation folds was
also considered. It is worth pointing out that the analyzed task does not assume a high
computation efficiency rather than the accuracy of the final classification that was the aim
of our research.

Figure 4. Illustration of the generalized pipeline of the data processing.

4. Statistical Analysis of the Electroretinogram Signal Database

Prior to using machine learning methods, the data were analyzed. The following
measures were considered in order to prove the consistent results: it was ensured that each
wavelet scalogram has all four correctly identified segments. If some of the segments were
missed, such a signal was not considered in the final analysis. Mostly, such cases were
related to subjects with pathology. However, it was necessary to conduct a more thorough
analysis of whether all of the segments should be presented on the wavelet scalogram as a
feature for express diagnosis. This analysis is out of the scope of this paper.

4.1. Pediatric Group

There were 65 signals used in the analysis of a pediatric group. We diagnosed 26 as
being healthy, and 39 as subjects with pathology among them. Table 2 presents the obtained
amplitude and the latency values for the a-waves and b-waves. According to the ISCEV
Standard, the results table contains the median values and standard deviation (STD), to
the 5th and 95th quantiles (Q5% and Q95%). The data are aggregated by the diagnosis.
The boxplots of amplitude and latency values for the a-waves and b-waves are plotted in
Figure 5a.
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(a)

(b)

Figure 5. Boxplots of amplitudes and latencies for a- and b-waves: (a) pediatric group; (b) adult group.

From the data written in Table 2 and Figure 5a, the following can be concluded: the
amplitude values seem to be better indicators for distinguishing between the two diagnostic
groups. The subjects with pathology tended to have lower values of amplitude. However,
it is worthy to mention that there are “overlaps” that make an improbable diagnosis using
a single feature.

4.2. Adults Group

For the adults group, 38 signals were used for the analysis. We diagnosed 11 as healthy
and 27 as subjects with pathology among them. Table 3 presents the values of amplitudes
and latencies for a and b waves. According to the ISCEV Standard we present median
values, standard deviation (STD), 5-th and 95-th quantile (Q5% and Q95%). The data
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are aggregated by the diagnosis. Figure 5b demonstrates the boxplots of amplitudes and
latencies for the a- and b-waves.

From the data presented in Tables 2 and 3 for the pediatric and adult groups corre-
spondingly and Figure 5b, the following can be concluded: only the b-wave amplitude
seems to work as an indicator to distinguish between the two diagnostic groups. The
subjects with pathology tend to have lower values of amplitude. In addition, one can
mention the latency of the a-wave, as the subjects with pathology tend to have higher
values. As given above, it is worthy to mention that there are “overlaps” that make an
improbable diagnosis using a single feature.

Table 2. Values of amplitudes and latencies for the a- and b-waves for the pediatric group.

Diagnosis Median ± STD Q5% Q95%

a

healthy 44.42 ± 16.06 17.1 60.51
pathology 36.47 ± 17.06 6.46 59.83

b

healthy 70.37 ± 13.97 47.81 89.03
pathology 60.13 ± 27.91 18.94 109.57

la

healthy 21.00 ± 7.71 9.38 32.38
pathology 18.50 ± 8.32 8.35 33.00

lb

healthy 47.50 ± 9.02 26.38 59.25
pathology 47.00 ± 7.01 35.80 59.00

Table 3. Values of amplitudes and latencies for the a- and b-waves for the adult group.

Diagnosis Median ± STD Q5% Q95%

a

healthy 34.51 ± 13.30 17.53 50.38
pathology 32.99 ± 15.33 5.19 54.39

b

healthy 68.73 ± 19.47 37.52 88.52
pathology 48.44 ± 24.22 17.70 97.95

la

healthy 47.50 ± 9.02 26.38 59.25
pathology 47.00 ± 7.01 35.80 59.00

lb

healthy 47.00 ± 9.16 39.25 65.25
pathology 51.50 ± 7.20 39.15 62.20

5. Results

Table 4 presents the values of classification metrics for the pediatric group.
It is worthy to mention that with the above-described approach of fitting DT on the

whole data to select significant features and to perform a cross-validation check afterwards,
this might introduce data leakage. However, with the limited amount of data, it was not
feasible to evaluate features importance on a subset of train data.

5.1. Pediatric Group

For the CF features set, the following feature was considered as being important: b.
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For the WA1–2 features set, the following four features were considered as being
important (the number denotes the segment number of the wavelet scalogram): Bmax1,
Amedian1, t12, f190 1.

For the WA1–4 features set, the following eight features were considered as being
important: Amedian1, Amean1, Amedian3, Amean3, f13, t4, t24, t290 4.

For the CF+WA1–4 features set, the following four features were considered as being
important: la, Amedian3, Amean3, t4.

Judging from the data in Table 4, it can be concluded that the proposed new WA
features seem to provide more robust and consistent models compared to the Classical
features used.

Analyzing the lists of important features, it is possible to conclude: the WA features
of segments 1 and 2 seem to have a higher classification “power” than the WA features of
segments 3 and 4. At the same time, the Classical Features seem to better complement the
WA features of segments 3 and 4.

Table 5 shows the values of the classification metrics for the adults group.

Table 4. Comparison of the classical and wavelet feature sets for pediatric group classification.

Features Set Metric Accuracy F1 Precision Recall

CF Mean 0.52 0.52 0.72 0.52
STD 0.06 0.18 0.19 0.32

WA1–4 Mean 0.70 0.74 0.78 0.76
STD 0.18 0.15 0.17 0.24

WA1–4 Mean 0.60 0.64 0.70 0.61
STD 0.06 0.05 0.08 0.12

CF+WA1–4 Mean 0.58 0.65 0.66 0.66
STD 0.10 0.07 0.07 0.10

Table 5. Comparison of the classical and wavelet feature sets for adults group classification.

Features Set Metric Accuracy F1 Precision Recall

CF Mean 0.54 0.62 0.55 0.73
STD 0.24 0.35 0.31 0.43

WA1–4 Mean 0.78 0.84 0.86 0.84
STD 0.23 0.17 0.19 0.16

WA1–4 Mean 0.81 0.86 0.87 0.88
STD 0.20 0.14 0.17 0.17

CF+WA1–4 Mean 0.83 0.88 0.89 0.88
STD 0.10 0.07 0.07 0.10

5.2. Adults Group

For the CF features set, the following three features were considered as being impor-
tant: a, b, and lb.

For the WA1–2 features set, the following two features were considered as being
important: t190 1, and t2.

For the WA1–4 features set, the following two features were considered as being
important: t190 1, t290 2.

For the CF+WA1–4 features set, the following five features were considered as being
important: lb, t1, t190 1, t2, Amedian2.

Judging from the data in Table 5, it can be concluded that the proposed new WA
features seem to provide more robust and consistent models compared to the Classical
features used. Analyzing the lists of important features, it is possible to conclude: the WA
features of segment 1 and 2 seem to have the highest classification “power”. Interestingly,
the joined features set has no WA features of segments 3 and 4.
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6. Discussion

The proposed method is based on the use of a continuous wavelet transform. In
comparison with Fast Fourier Transform, linear prediction, Windowed Fourier Transform,
and other common methods, continuous wavelet transform provides a variable window
size, a high resolution at low and high frequencies, and the ability to obtain detailed
information during rapid frequency changes; it is also suitable for extracting features from
non-stationary signals.

In order to determine the ERG parameters, Varadharajan [25] compared the results
of the time domain analysis and the continuous wavelet transform. It was confirmed that
the continuous wavelet transform could distinguish between normal and abnormal ERGs,
particularly in the early diagnosis of glaucoma, and that it was more accurate than the time
domain analysis methods.

A research group led by Penkala [26] focused on extracting information about the time–
frequency characteristics of the ERG a- and b-waves using wavelet analysis. According to
their results, low-frequency components dominated (both in a-waves and b-waves), and
their temporal distribution was affected by the brightness of the light pulses.

Barraco [27] used wavelet analysis to extract the characteristics of the ERG a-wave.
The work was focused on diagnosing two pathologies: achromatopsia and congenital
stationary night blindness. The results showed that the number of dominant frequencies
and the times of their occurrences in both of the studied diseases could reflect the state of
the retinal photoreceptors. A comparison of individual pathological cases with a healthy
control group revealed that both the components of the incidence of the disease were
shifted toward the lower frequencies. Other studies [28–32] also point toward the use of
wavelet analysis. It should be noted that wavelet analysis is used directly in the above
studies. In other words, there is no extraction of parameters from the wavelet scalograms.

7. Conclusions

The results of the study show that the proposed algorithm implements more accurately
the classification of adult electroretinogram signals by 19% and pediatric signals by 20%,
compared to the classical algorithm. The promising use of ERG is presented by differential
diagnostics, which may also be used in preclinical toxicology and experimental modeling.
The problem of developing methods for electrophysiological signals analysis in ophthal-
mology is associated with the complex morphological structure of the electrophysiological
signals components. This is due to the generation of retina cell electrical responses to light
stimuli. A classical algorithm might not have high efficiency metrics, since electroretinog-
raphy often occurs in conjunction with other diagnostic methods in outpatient practice,
which allows for an assessment of the retina’s functional status. The next stage of the
current work will assume the use of the exceed database, as well as an investigation of
extra modern methods of feature extraction and classification. For instance, we are going
to test such time-series classification techniques as shapelets, elastic measurements, or
dictionary-based ones.
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