Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131210
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorHashan, A. M.en
dc.contributor.authorUl, Islam, R. M. R.en
dc.contributor.authorAvinash, K.en
dc.date.accessioned2024-04-08T11:05:44Z-
dc.date.available2024-04-08T11:05:44Z-
dc.date.issued2022-
dc.identifier.citationAntor, MH, Md Rakib, UIR & Kumar, A 2022, 'Apple Leaf Disease Classification Using Image Dataset: a Multilayer Convolutional Neural Network Approach', Информатика и автоматизация, Том. 21, № 4, стр. 710-728. https://doi.org/10.15622/ia.21.4.3harvard_pure
dc.identifier.citationAntor, M. H., Md Rakib, U. I. R., & Kumar, A. (2022). Apple Leaf Disease Classification Using Image Dataset: a Multilayer Convolutional Neural Network Approach. Информатика и автоматизация, 21(4), 710-728. https://doi.org/10.15622/ia.21.4.3apa_pure
dc.identifier.issn2713-3192-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttp://ia.spcras.ru/index.php/sp/article/download/15314/151031
dc.identifier.otherhttp://ia.spcras.ru/index.php/sp/article/download/15314/15103pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131210-
dc.description.abstractAgriculture is one of the prime sources of economic growth in Russia; the global apple production in 2019 was 87 million tons. Apple leaf diseases are the main reason for annual decreases in apple production, which creates huge economic losses. Automated methods for detecting apple leaf diseases are beneficial in reducing the laborious work of monitoring apple gardens and early detection of disease symptoms. This article proposes a multilayer convolutional neural network (MCNN), which is able to classify apple leaves into one of the following categories: apple scab, black rot, and apple cedar rust diseases using a newly created dataset. In this method, we used affine transformation and perspective transformation techniques to increase the size of the dataset. After that, OpenCV crop and histogram equalization method-based preprocessing operations were used to improve the proposed image dataset. The experimental results show that the system achieves 98.40% training accuracy and 98.47% validation accuracy on the proposed image dataset with a smaller number of training parameters. The results envisage a higher classification accuracy of the proposed MCNN model when compared with the other well-known state-of-the-art approaches. This proposed model can be used to detect and classify other types of apple diseases from different image datasets. © Informatics and Automation.All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSt. Petersburg Federal Research Center of the Russian Academy of Sciencesen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceИнформатика и автоматизация2
dc.sourceInformatics and Automationen
dc.subjectAPPLE LEAF DISEASEen
dc.subjectARTIFICIAL INTELLIGENCEen
dc.subjectCLASSIFICATIONen
dc.subjectIMAGE PROCESSINGen
dc.subjectMULTILAYER CONVOLUTIONAL NEURAL NETWORKen
dc.titleAPPLE LEAF DISEASE CLASSIFICATION USING IMAGE DATASET: A MULTILAYER CONVOLUTIONAL NEURAL NETWORK APPROACHen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi49089679-
dc.identifier.doi10.15622/ia.21.4.3-
dc.identifier.scopus85135789388-
local.contributor.employeeHashan A.M., 19, Mira St., Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeUl Islam R.M.R., 19, Mira St., Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeAvinash K., 19, Mira St., Yekaterinburg, 620002, Russian Federationen
local.description.firstpage710-
local.description.lastpage728-
local.issue4-
local.volume21-
local.contributor.department19, Mira St., Yekaterinburg, 620002, Russian Federationen
local.identifier.pure30763672-
local.identifier.pureb70b6310-3de8-48c8-90f1-26c118f1c206uuid
local.identifier.eid2-s2.0-85135789388-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85135789388.pdf1,29 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons